low altitude
Recently Published Documents


TOTAL DOCUMENTS

2576
(FIVE YEARS 656)

H-INDEX

57
(FIVE YEARS 9)

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Zaixue Wei ◽  
Qipeng Tang

Aerial communication is very flexible due to almost no restrictions on geographical conditions. In recent years, with the development and application of the unmanned aerial vehicle, the air-to-air communication attracts dense interests from the researchers. More accurate and precise channel modeling for air-to-air communication is a new hot topic because of its essential role in the performance evaluation of the systems. This paper presents an analytical nonstationary regular-shaped geometry-based statistical model for low-altitude air-to-air communication over an open area with considerations on ground scattering. Analytical expressions of the channel impulse response and the autocorrelation functions based on the three-ray model are derived. Based on the assumption of uniform distribution of the ground scatterers, the distributions of the channel coefficients such as time delay and path attenuation are derived, simulated, compared, and fitted. The nonstationary characteristics of the channel are observed through the time-variant distributions of the channel coefficients as well as the time-variant autocorrelated functions and time-variant Doppler power spectrum density.


Author(s):  
Alexander Shelekhov ◽  
Aleksey Afanasiev ◽  
Evgenia Shelekhova ◽  
Alexey Kobzev ◽  
Alexey Tel’minov ◽  
...  

The capabilities of a quadcopter in the hover mode for low-altitude sensing of atmospheric turbulence with high spatial resolution in urban areas characterized by complex orography are investigated. The studies were carried out in different seasons (winter, spring, summer, and fall), and the quadcopter hovered in the immediate vicinity of ultrasonic weather stations. The DJI Phantom 4 Pro quadcopter and AMK-03 ultrasonic weather stations installed in different places of the studied territory were used in the experiment. The smoothing procedure was used to main regularities in the behavior of the longitudinal and lateral spectra of turbulence in the inertial and energy production ranges. The longitudinal and lateral turbulence scales were estimated by the least-square fit method with the von Karman model as a regression curve. It is shown that the turbulence spectra obtained with DJI Phantom 4 Pro and AMK-03 generally coincide with minor differences observed in the high-frequency region of the spectrum. In the inertial range, the behavior of the turbulence spectra shows that they obey the Kolmogorov-Obukhov “5/3” law. In the energy production range, the longitudinal and lateral turbulence scales and their ratio measured by DJI Phantom 4 Pro and AMK-03 agree to a good accuracy. Discrepancies in the data obtained with the quadcopter and the ultrasonic weather stations at the territory with complex orography are explained by the partial correlation of the wind velocity series at different measurement points and the influence of the inhomogeneous surface.


2022 ◽  
Author(s):  
Xiaozhong Wang ◽  
Tao Liang ◽  
Dunxiu Liao ◽  
Weilin Tao ◽  
Rui Jiang ◽  
...  

Abstract Global warming has driven the expansion of cultivated land to high-altitude areas. Intensive vegetable production, which is generally considered to be a high economic value and high environmental risk system, has expanded greatly in high-altitude mountainous areas of China. However, the environmental cost of vegetable production in these areas is poorly understood. In this study, we investigated pepper production at low (traditional pepper production area) and high (newly expanded area) altitudes in Shizhu, a typical pepper crop area. The output and environmental cost at the two altitudes were identified. We evaluated the influence of resource inputs, climate, and soil properties on pepper production. There were obvious differences in output and environmental cost between the two altitudes. High-altitude pepper production achieved a 16.2% lower yield, and had a higher fertilizer input, resulting in a 22.3% lower net ecosystem economic benefit (NEEB), 23.0% higher nitrogen (N) footprint and 24.0% higher carbon (C) footprint compared to low-altitude farming. There is potential for environmental mitigation with both high- and low-altitude pepper production; Compared to average farmers, high yield farmers groups reduced their N and C footprints by 16.9–24.8% and 18.3–25.2%, respectively, with 30.6–34.1% higher yield. A large increase in yield could also be achieved by increasing the top-dress fertilizer rate and decreasing the plant density. Importantly, high-altitude pepper production was achieved despite less advanced technology and inferior conditions (e.g., a poor road system and uneven fields). It provides a reference for the study on environmental cost of other high-altitude regions or other crop systems at high altitude area.


2022 ◽  
Author(s):  
Fei Li ◽  
Jingya Bai ◽  
Mengyun Zhang ◽  
Ruoyu Zhang

Abstract Background: Different from other parts of the world, China has its own cotton planting pattern. Cotton are densely planted in wide-narrow rows to increase yield in Xinjiang, China, causing the difficulty in the accurate evaluation of cotton yields using remote sensing in such field with branches occluded and overlapped. Results: In this study, low-altitude unmanned aerial vehicle (UAV) imaging and deep convolutional neural networks (DCNN) were used to estimate the yields of densely planted cotton. Images of cotton field were acquired by an UAV at the height of 5 m. Cotton bolls were manually harvested and weighted afterwards. Then, a modified DCNN model was developed by applying encoder-decoder recombination and dilated convolution for pixel-wise cotton boll segmentation termed CD-SegNet. Linear regression analysis was employed to build up the relationship between cotton boll pixels ratio and cotton yield. Yield estimations of four cotton fields were verified after machine harvest and weighting. The results showed that CD-SegNet outperformed the other tested models including SegNet, support vector machine (SVM), and random forest (RF). The average error of the estimated yield of the cotton fields was 6.2%. Conclusions: Overall, the yield estimation of densely planted cotton based on lowaltitude UAV imaging is feasible. This study provides a methodological reference for cotton yield estimation in China.


2022 ◽  
Vol 12 (2) ◽  
pp. 576
Author(s):  
Joseph Kim ◽  
Ella Atkins

Airspace geofencing is a key capability for low-altitude Unmanned Aircraft System (UAS) Traffic Management (UTM). Geofenced airspace volumes can be allocated to safely contain compatible UAS flight operations within a fly-zone (keep-in geofence) and ensure the avoidance of no-fly zones (keep-out geofences). This paper presents the application of three-dimensional flight volumization algorithms to support airspace geofence management for UTM. Layered polygon geofence volumes enclose user-input waypoint-based 3-D flight trajectories, and a family of flight trajectory solutions designed to avoid keep-out geofence volumes is proposed using computational geometry. Geofencing and path planning solutions are analyzed in an accurately mapped urban environment. Urban map data processing algorithms are presented. Monte Carlo simulations statistically validate our algorithms, and runtime statistics are tabulated. Benchmark evaluation results in a Manhattan, New York City low-altitude environment compare our geofenced dynamic path planning solutions against a fixed airway corridor design. A case study with UAS route deconfliction is presented, illustrating how the proposed geofencing pipeline supports multi-vehicle deconfliction. This paper contributes to the nascent theory and the practice of dynamic airspace geofencing in support of UTM.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Michel Parrot ◽  
Frantisěk Němec ◽  
Morris B. Cohen ◽  
Mark Gołkowski

AbstractA spectrogram of Power Line Harmonic Radiation (PLHR) consists of a set of lines with frequency spacing corresponding exactly to 50 or 60 Hz. It is distinct from a spectrogram of Magnetospheric Line Radiation (MLR) where the lines are not equidistant and drift in frequency. PLHR and MLR propagate in the ionosphere and the magnetosphere and are recorded by ground experiments and satellites. If the source of PLHR is evident, the origin of the MLR is still under debate and the purpose of this paper is to understand how MLR lines are formed. The ELF waves triggered by High-frequency Active Auroral Research Program (HAARP) in the ionosphere are used to simulate lines (pulses of different lengths and different frequencies). Several receivers are utilized to survey the propagation of these pulses. The resulting waves are simultaneously recorded by ground-based experiments close to HAARP in Alaska, and by the low-altitude satellite DEMETER either above HAARP or its magnetically conjugate point. Six cases are presented which show that 2-hop echoes (pulses going back and forth in the magnetosphere) are very often observed. The pulses emitted by HAARP return in the Northern hemisphere with a time delay. A detailed spectral analysis shows that sidebands can be triggered and create elements with superposed frequency lines which drift in frequency during the propagation. These elements acting like quasi-periodic emissions are subjected to equatorial amplification and can trigger hooks and falling tones. At the end all these known physical processes lead to the formation of the observed MLR by HAARP pulses. It is shown that there is a tendency for the MLR frequencies of occurrence to be around 2 kHz although the exciting waves have been emitted at lower and higher frequencies. Graphical Abstract


2022 ◽  
Vol 122 (1) ◽  
pp. 21-53 ◽  
Author(s):  
Harold L. Beck ◽  
André Bouville ◽  
Steven L. Simon ◽  
Lynn R. Anspaugh ◽  
Kathleen M. Thiessen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document