hypoxia inducible factor 1
Recently Published Documents


TOTAL DOCUMENTS

1838
(FIVE YEARS 302)

H-INDEX

138
(FIVE YEARS 9)

2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Julia Baumann ◽  
Chih-Chieh Tsao ◽  
Shalmali Patkar ◽  
Sheng-Fu Huang ◽  
Simona Francia ◽  
...  

Abstract Background Ways to prevent disease-induced vascular modifications that accelerate brain damage remain largely elusive. Improved understanding of perivascular cell signalling could provide unparalleled insight as these cells impact vascular stability and functionality of the neurovascular unit as a whole. Identifying key drivers of astrocyte and pericyte responses that modify cell–cell interactions and crosstalk during injury is key. At the cellular level, injury-induced outcomes are closely entwined with activation of the hypoxia-inducible factor-1 (HIF-1) pathway. Studies clearly suggest that endothelial HIF-1 signalling increases blood–brain barrier permeability but the influence of perivascular HIF-1 induction on outcome is unknown. Using novel mouse lines with astrocyte and pericyte targeted HIF-1 loss of function, we herein show that vascular stability in vivo is differentially impacted by perivascular hypoxia-induced HIF-1 stabilization. Methods To facilitate HIF-1 deletion in adult mice without developmental complications, novel Cre-inducible astrocyte-targeted (GFAP-CreERT2; HIF-1αfl/fl and GLAST-CreERT2; HIF-1αfl/fl) and pericyte-targeted (SMMHC-CreERT2; HIF-1αfl/fl) transgenic animals were generated. Mice in their home cages were exposed to either normoxia (21% O2) or hypoxia (8% O2) for 96 h in an oxygen-controlled humidified glove box. All lines were similarly responsive to hypoxic challenge and post-Cre activation showed significantly reduced HIF-1 target gene levels in the individual cells as predicted. Results Unexpectedly, hypoxia-induced vascular remodelling was unaffected by HIF-1 loss of function in the two astrocyte lines but effectively blocked in the pericyte line. In correlation, hypoxia-induced barrier permeability and water accumulation were abrogated only in pericyte targeted HIF-1 loss of function mice. In contrast to expectation, brain and serum levels of hypoxia-induced VEGF, TGF-β and MMPs (genes known to mediate vascular remodelling) were unaffected by HIF-1 deletion in all lines. However, in agreement with the permeability data, immunofluorescence and electron microscopy showed clear prevention of hypoxia-induced tight junction disruption in the pericyte loss of function line. Conclusion This study shows that pericyte but not astrocyte HIF-1 stabilization modulates endothelial tight junction functionality and thereby plays a pivotal role in hypoxia-induced vascular dysfunction. Whether the cells respond similarly or differentially to other injury stimuli will be of significant relevance.


2022 ◽  
Vol 289 (1966) ◽  
Author(s):  
Milica Mandic ◽  
Kaitlyn Flear ◽  
Pearl Qiu ◽  
Yihang K. Pan ◽  
Steve F. Perry ◽  
...  

Hypoxia-inducible factor 1-α (Hif-1α), an important transcription factor regulating cellular responses to reductions in O 2 , previously was shown to improve hypoxia tolerance in zebrafish ( Danio rerio ). Here, we examined the contribution of Hif-1α to hypoxic survival, focusing on the benefit of aquatic surface respiration (ASR). Wild-type and Hif-1α knockout lines of adult zebrafish were exposed to two levels (moderate or severe) of intermittent hypoxia. Survival was significantly compromised in Hif-1α knockout zebrafish prevented from accessing the surface during severe (16 mmHg) but not moderate (23 mmHg) hypoxia. When allowed access to the surface in severe hypoxia, survival times did not differ between wild-type and Hif-1α knockouts. Performing ASR mitigated the negative effects of the loss of Hif-1α with the knockouts initiating ASR at a higher P O 2 threshold and performing ASR for longer than wild-types. The loss of Hif-1α had little impact on survival in fish between 1 and 5 days post-fertilization, but as the larvae aged, their reliance on Hif-1α increased. Similar to adult fish, ASR compensated for the loss of Hif-1α on survival. Together, these results demonstrate that age, hypoxia severity and, in particular, the ability to perform ASR significantly modulate the impact of Hif-1α on survival in hypoxic zebrafish.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Corine M van der Weele ◽  
William R Jeffery

Dark caves lacking primary productivity can expose subterranean animals to hypoxia. We used the surface-dwelling (surface fish) and cave-dwelling (cavefish) morphs of Astyanax mexicanus as a model for understanding the mechanisms of hypoxia tolerance in the cave environment. Primitive hematopoiesis, which is restricted to the posterior lateral mesoderm in other teleosts, also occurs in the anterior lateral mesoderm in Astyanax, potentially pre-adapting surface fish for hypoxic cave colonization. Cavefish have enlarged both hematopoietic domains and develop more erythrocytes than surface fish, which are required for normal development in both morphs. Laboratory induced hypoxia suppresses growth in surface fish but not in cavefish. Both morphs respond to hypoxia by overexpressing hypoxia-inducible factor 1 (hif1) pathway genes, and some hif1 genes are constitutively upregulated in normoxic cavefish to similar levels as in hypoxic surface fish. We conclude that cavefish cope with hypoxia by increasing erythrocyte development and constitutive hif1 gene overexpression.


2021 ◽  
Vol 37 (sup1) ◽  
pp. 35-39
Author(s):  
Roman V. Kapustin ◽  
Ekaterina V. Kopteeva ◽  
Elena N. Alekseenkova ◽  
Tatyana G. Tral ◽  
Gulrukhsor Kh. Tolibova ◽  
...  

Author(s):  
Antonella Falconieri ◽  
Giovanni Minervini ◽  
Federica Quaglia ◽  
Geppo Sartori ◽  
Silvio C.E. Tosatto

Functional impairment of the von Hippel-Lindau (pVHL) tumor suppressor is causative of a familiar increased risk to develop cancer. As E3 substrate recognition particle, pVHL marks for degradation the hypoxia inducible factor 1α (HIF-1α) in normoxic conditions, thus acting as a key regulator of both acute and chronic cell adaptation to hypoxia. Further evidence showed pVHL to also play relevant roles in microtubules stabilization, participate in the formation of the extracellular matrix, as well as to regulate cell senescence and apoptosis. Male mice model carrying VHL gene conditional knockout present significative abnormalities in testis development paired with defects in spermatogenesis and infertility, indicating that pVHL exerts testis-specific roles, at least in mice. Here, we describe 55 novel interactors of the human pVHL obtained by testis-tissue library screening. We show that pVHL interacts with multiple human proteins directly involved in spermatogenesis and reproductive metabolism, suggesting that, in addition to its role in cancer formation, pVHL may be pivotal in the correct gonads development also in human.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3441
Author(s):  
Davide Marchi ◽  
Fredericus J. M. van Eeden

Glucocorticoids (GCs) represent a well-known class of lipophilic steroid hormones biosynthesised, with a circadian rhythm, by the adrenal glands in humans and by the inter-renal tissue in teleost fish (e.g., zebrafish). GCs play a key role in the regulation of numerous physiological processes, including inflammation, glucose, lipid, protein metabolism and stress response. This is achieved through binding to their cognate receptor, GR, which functions as a ligand-activated transcription factor. Due to their potent anti-inflammatory and immune-suppressive action, synthetic GCs are broadly used for treating pathological disorders that are very often linked to hypoxia (e.g., rheumatoid arthritis, inflammatory, allergic, infectious, and autoimmune diseases, among others) as well as to prevent graft rejections and against immune system malignancies. However, due to the presence of adverse effects and GC resistance their therapeutic benefits are limited in patients chronically treated with steroids. For this reason, understanding how to fine-tune GR activity is crucial in the search for novel therapeutic strategies aimed at reducing GC-related side effects and effectively restoring homeostasis. Recent research has uncovered novel mechanisms that inhibit GR function, thereby causing glucocorticoid resistance, and has produced some surprising new findings. In this review we analyse these mechanisms and focus on the crosstalk between GR and HIF signalling. Indeed, its comprehension may provide new routes to develop novel therapeutic targets for effectively treating immune and inflammatory response and to simultaneously facilitate the development of innovative GCs with a better benefits-risk ratio.


2021 ◽  
Vol 6 (1) ◽  
pp. 1266-1274
Author(s):  
Riyadh Firdaus ◽  
Ani Retno Prijanti

Hypoxia inducible factor-1 (HIF-1) is a transcription factor that plays an important role in maintaining oxygen balance at both the cellular and systemic levels, and is associated with various controls in the body. HIF-1 is a heterodimer of alpha and beta subunits. Alpha subunits are mostly dependent on oxygen levels in the body. In many cancers, excessive HIF-1α is thought to be involved in the promotion of tumor growth and metastasis. In addition, in the induction of systemic hypoxia, there is an increase of HIF-1α in the heart, brain, and even the kidneys as an adaptation response to hypoxia. Several studies regarding HIF-1a expression in traumatic brain injury, found that HIF-1a increased immediately after TBI, and decreased significantly after 24 hours. This can be used as a basis for further research on HIF-1a control as an effort to stop tissue damage or even help tissue repair.


Sign in / Sign up

Export Citation Format

Share Document