B071 Single sided deafness treated with CI: localization ability and speech performance

Author(s):  
S. Brill ◽  
A. Möltner ◽  
W. Harnisch ◽  
J. Mueller
Author(s):  
Ji Hyeon Lee ◽  
Young Joon Seo

As the technology advances and bone conduction implant (BCI) use increases, implantable bone conduction hearing aids are regarded as a treatment method for single-sided deafness (SSD) and their efficacy on SSD must be discussed. Therefore, we organized the problems of SSD and types of implantable bone conduction hearing aids and explained their effectiveness in the treatment of SSD in terms of changes in 1) speech recognition in a noisy environment, 2) sound localization, 3) subjective satisfaction as assessed by questionnaire, and 4) tinnitus. Although bone conduction hearing aids do not significantly improve localization ability in SSD, they increase the ability to listen under noise, increasing subjective satisfaction. Tinnitus improvement was also reported. The active forms of BCI like MED-EL BONEBRIDGE®2 and Cochlear Osia®2 have been developed well. Based on these technological developments and effects, bone conduction hearing aids would be a good option for treatment option of SSD.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 265
Author(s):  
Artur Lorens ◽  
Anita Obrycka ◽  
Piotr Henryk Skarzynski ◽  
Henryk Skarzynski

The purpose of the study is to gauge the benefits of binaural integration effects (redundancy and squelch) due to preserved low-frequency residual hearing in the implanted ear of cochlear implant users with single-sided deafness. There were 11 cochlear implant users (age 18–61 years old) who had preserved low-frequency hearing in the implanted ear; they had a normal hearing or mild hearing loss in the contralateral ear. Patients were tested with monosyllabic words, under different spatial locations of speech and noise and with the cochlear implant activated and deactivated, in two listening configurations—one in which low frequencies in the implanted ear were masked and another in which they were unmasked. We also investigated how cochlear implant benefit due to binaural integration depended on unaided sound localization ability. Patients benefited from the binaural integration effects of redundancy and squelch only in the unmasked condition. Pearson correlations between binaural integration effects and unaided sound localization error showed significance only for squelch (r = −0.67; p = 0.02). Hearing preservation after cochlear implantation has considerable benefits because the preserved low-frequency hearing in the implanted ear contributes to binaural integration, presumably through the preserved temporal fine structure.


2019 ◽  
Vol 62 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Jessica M. Wess ◽  
Joshua G. W. Bernstein

PurposeFor listeners with single-sided deafness, a cochlear implant (CI) can improve speech understanding by giving the listener access to the ear with the better target-to-masker ratio (TMR; head shadow) or by providing interaural difference cues to facilitate the perceptual separation of concurrent talkers (squelch). CI simulations presented to listeners with normal hearing examined how these benefits could be affected by interaural differences in loudness growth in a speech-on-speech masking task.MethodExperiment 1 examined a target–masker spatial configuration where the vocoded ear had a poorer TMR than the nonvocoded ear. Experiment 2 examined the reverse configuration. Generic head-related transfer functions simulated free-field listening. Compression or expansion was applied independently to each vocoder channel (power-law exponents: 0.25, 0.5, 1, 1.5, or 2).ResultsCompression reduced the benefit provided by the vocoder ear in both experiments. There was some evidence that expansion increased squelch in Experiment 1 but reduced the benefit in Experiment 2 where the vocoder ear provided a combination of head-shadow and squelch benefits.ConclusionsThe effects of compression and expansion are interpreted in terms of envelope distortion and changes in the vocoded-ear TMR (for head shadow) or changes in perceived target–masker spatial separation (for squelch). The compression parameter is a candidate for clinical optimization to improve single-sided deafness CI outcomes.


2021 ◽  
Vol 11 (2) ◽  
pp. 207-219
Author(s):  
Susan E. Ellsperman ◽  
Emily M. Nairn ◽  
Emily Z. Stucken

Bone conduction is an efficient pathway of sound transmission which can be harnessed to provide hearing amplification. Bone conduction hearing devices may be indicated when ear canal pathology precludes the use of a conventional hearing aid, as well as in cases of single-sided deafness. Several different technologies exist which transmit sound via bone conduction. Here, we will review the physiology of bone conduction, the indications for bone conduction amplification, and the specifics of currently available devices.


Sign in / Sign up

Export Citation Format

Share Document