sound transmission
Recently Published Documents


TOTAL DOCUMENTS

2019
(FIVE YEARS 250)

H-INDEX

52
(FIVE YEARS 7)

2022 ◽  
pp. 107754632110467
Author(s):  
Shohreh Reaei ◽  
Roohollah Talebitooti

The present study is concerned with an analytical solution for calculating sound transmission loss through an infinite double-walled circular cylindrical shell with two isotropic skins and a polymeric foam core. Accordingly, the two-walled cylindrical shell is stimulated applying an acoustic oblique plane wave. The equations of motion are derived according to Hamilton’s principle using the first-order shear deformation theory for every three layers of the construction. Additionally, by the aid of employing the Zener mathematical model for the core of polymeric foam, mechanical properties are determined. To authenticate the results of this study, the damping of the core layer goes to zero. Therefore, the numerical results in this special case are compared with those of isotropic shells. The results prove that the presented model has high accuracy. It is also designated that decreasing the power-law exponent of the core leads to improving the sound transmission loss through the thickness of the construction. Besides, in addition to probe some configurations versus alterations of frequencies and dimensions, the convergence algorithm is provided. Consequently, it is realized that by increasing the excitation frequency, the minimum number of modes to find the convergence conditions is enhanced. The results also contain a comparison between the sound transmission loss coefficient for four different models of a core of a sandwiched cylindrical shell. It is comprehended that the presented model has a transmission loss coefficient more than the other types of the core at high frequencies.


2022 ◽  
pp. 107754632110567
Author(s):  
Hasan Seilsepour ◽  
Mohamadreza Zarastvand ◽  
Roohollah Talebitooti

A viscoelastic model is proposed in this approach to determine the sound transmission loss coefficient of a sandwich shell system with double curvature. The structure is composed of a double-walled composite shell subjected to a viscoelastic core. Investigating the efficient impresses of rotary inertia and shear deformation, vibration equations of both outer and inner shells are extracted within the framework of shear deformation shallow shell theory. Besides, the Zener mathematical model is used for viscoelastic material, which is based on a spring connected in series with a parallel mixture of spring and dashpot. This model presents the dynamic response in the whole frequency domain at which shear modulus and bulk complex modulus are frequency dependent. Since the performed studies on the sound transmission loss of this kind of structures are insignificant, the outcomes of plate models with a viscoelastic core are used to provide a reliable sound transmission loss comparison. The results show that the applied strategy can improve the acoustic characteristics of the system at high frequencies compared to that of a single-layer one with the same mass. This issue is more highlighted while the thickness of the viscoelastic layer enhances, which confirms the positive performance of the viscoelastic materials in this range of frequency, particularly in the resonant frequency. In addition to the curvature effect on acoustic features, the vibration response of the system is configured based on various frequencies and materials.


2022 ◽  
Vol 188 ◽  
pp. 108569
Author(s):  
Ahmad Yusuf Ismail ◽  
Jisan Kim ◽  
Se-Myong Chang ◽  
Bonyong Koo

2022 ◽  
Vol 355 ◽  
pp. 01016
Author(s):  
Juan Ren ◽  
Qingjun Liu ◽  
Ting Chen ◽  
Pingye Deng

There are a lot of principles for sound transmission in the pipeline for whether sound transmission structure or noise reduction structure. Even in ultrasonic testing, there is a large number of principles for using pipeline sound transmission. Based on the sound propagation model and the boundary conditions of pipe wall sound absorption, the sound propagation equation for pipe wall sound absorption is given by establishing mathematical model and solving mathematical equation in this paper. When the distribution of sound field along the cross-section of the pipe (outlet) is ignored, the transmission efficiency of sound with different frequencies can be calculated or the sound absorption efficiency can be calculated. The analytical solution of the sound transmission equation in the pipeline has great theoretical significance and practical value for guiding the structural design of sound transmission and noise reduction, improving the calculation efficiency and verifying the numerical analysis results.


2021 ◽  
Vol 21 (6) ◽  
pp. 161-165
Author(s):  
Hye-kyung Shin ◽  
Donggu Seo ◽  
Sangheon Kim ◽  
Kyungsuk Cho

Recently, various intelligent evacuation guidance systems that can be applied in buildings were studied. Technology development for the evacuation of vulnerable people such as the visually-impaired is necessary. Voice guidance is a method used to lead the visually-impaired toward the evacuation route. However, it is necessary to review whether it is possible to hear and understand the voice guidance during the sounding of fire alarms. In this study, simulations were conducted to predict the sound power level of the voice guidance device that can secure an acceptable sound transmission index of the guide sound and the appropriate distance from the voice guidance device, when a fire alarm sound is generated in a hallway space. The study found that an acceptable sound transmission index was achieved when the sound power level was 100 dB and the appropriate type of sound device was found to be a necklace-type headset or a regular headphone.


Author(s):  
Lei Zhou ◽  
Na Shen ◽  
Miaolin Feng ◽  
Houguang Liu ◽  
Maoli Duan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7785
Author(s):  
Longlong Ren ◽  
Haosen Yang ◽  
Lei Liu ◽  
Chuanlong Zhai ◽  
Yuepeng Song

With the extension of the applications of sandwich panels with corrugated core, sound insulation performance has been a great concern for acoustic comfort design in many industrial fields. This paper presents a numerical and experimental study on the vibro-acoustic optimization of a finite size sandwich panel with corrugated core for maximizing the sound transmission loss. The numerical model is established by using the wave-based method, which shows a great improvement in the computational efficiency comparing to the finite element method. Constrained by the fundamental frequency and total mass, the optimization is performed by using a genetic algorithm in three different frequency bands. According to the optimization results, the frequency averaged sound transmission of the optimized models in the low, middle, and high-frequency ranges has increased, respectively, by 7.6 dB, 7.9 dB, and 11.7 dB compared to the baseline model. Benefiting from the vast number of the evolution samples, the correlation between the structural design parameters and the sound transmission characteristics is analyzed by introducing the coefficient of determination, which gives the variation of the importance of each design parameter in different frequency ranges. Finally, for validation purposes, a sound insulation test is conducted to validate the optimization results in the high-frequency range, which proves the feasibility of the optimization method in the practical engineering design of the sandwich panel.


2021 ◽  
Author(s):  
Yunlai Yang ◽  
Wei Li ◽  
Fahd A. Almalki ◽  
Maher I. Almarhoon

Abstract Real time lithological information at the drill bit is required for some important drilling operations, such as geo-steering and casing shoe positioning. This paper presents a novel tool "Petro-phone" for recording and processing drill bit sounds, which are generated by the drill bit cutting the rock, in order to provide real time lithological information for the rock at the drill bit. A prototype and a preliminary professional version of Petro-phone have been developed and field trialed. Petro-phone is a surface tool with its acoustic sensors attached to the top drive of a drill rig at some strategical locations for maximally picking up drill bit sounds. The drill bit sounds generated at the drill bit transmit along drill string and drive shaft to reach to the acoustic sensors. Since all the parts along the drill bit sound transmission pathway are made of steel, the drill bit sounds transmit efficiently from the source (drill bit) to the sensors. Preliminary results from two field trials show that drill bit sound patterns correlate with lithologies. The results also indicate that a parameter "Apparent Power" of drill bit sounds negatively correlates with gamma log. Due to its true real time nature, Petro-phone potentially has some real time applications, such as geo-steering, casing shoes positioning. Recorded drill bit sound can also potentially be used to derive lithological information, such as lithology type.


Sign in / Sign up

Export Citation Format

Share Document