scholarly journals The Coulomb phase in N = 1 gauge theories with an LG-type superpotential

1997 ◽  
Vol 499 (1-2) ◽  
pp. 100-124 ◽  
Author(s):  
Amit Giveon ◽  
Oskar Pelc ◽  
Eliezer Rabinovici
Keyword(s):  
Author(s):  
Uwe-Jens Wiese

Quantum link models provide an extension of Wilson’s lattice gauge theory in which the link Hilbert space is finite-dimensional and corresponds to a representation of an embedding algebra. In contrast to Wilson’s parallel transporters, quantum links are intrinsically quantum degrees of freedom. In D-theory, these discrete variables undergo dimensional reduction, thus giving rise to asymptotically free theories. In this way ( 1 + 1 ) -d C P ( N − 1 ) models emerge by dimensional reduction from ( 2 + 1 ) -d S U ( N ) quantum spin ladders, the ( 2 + 1 ) -d confining U ( 1 ) gauge theory emerges from the Abelian Coulomb phase of a ( 3 + 1 ) -d quantum link model, and ( 3 + 1 ) -d QCD arises from a non-Abelian Coulomb phase of a ( 4 + 1 ) -d S U ( 3 ) quantum link model, with chiral quarks arising naturally as domain wall fermions. Thanks to their finite-dimensional Hilbert space and their economical mechanism of reaching the continuum limit by dimensional reduction, quantum link models provide a resource efficient framework for the quantum simulation and computation of gauge theories. This article is part of the theme issue ‘Quantum technologies in particle physics’.


2010 ◽  
Vol 25 (31) ◽  
pp. 5595-5645
Author(s):  
TERUHIKO KAWANO ◽  
FUTOSHI YAGI

A summary is reported on our previous publications about four-dimensional [Formula: see text] supersymmetric Spin(10) gauge theory with chiral superfields in the spinor and vector representations in the non-Abelian Coulomb phase. Carrying out the method of a-maximization, we studied decoupling operators in the infrared and the renormalization flow of the theory. We also give a brief review on the non-Abelian Coulomb phase of the theory after recalling the unitarity bound and the a-maximization procedure in four-dimensional conformal field theory.


1997 ◽  
Vol 12 (27) ◽  
pp. 4907-4931 ◽  
Author(s):  
I. Antoniadis ◽  
B. Pioline

Low-energy limits of N = 2 supersymmetric field theories in the Higgs branch are described in terms of a nonlinear four-dimensional σ-model on a hyper-Kähler target space, classically obtained as a hyper-Kähler quotient of the original flat hypermultiplet space by the gauge group. We review in a pedagogical way this construction, and illustrate it in various examples, with special attention given to the singularities emerging in the low-energy theory. In particular, we thoroughly study the Higgs branch singularity of Seiberg–Witten SU(2) theory with Nf flavors, interpreted by Witten as a small instanton singularity in the moduli space of one instanton on ℝ4. By explicitly evaluating the metric, we show that this Higgs branch coincides with the Higgs branch of a U(1) N = 2 SUSY theory with the number of flavors predicted by the singularity structure of Seiberg–Witten's theory in the Coulomb phase. We find another example of Higgs phase duality, namely between the Higgs phases of U(Nc)Nf flavors and U(Nf-Nc)Nf flavors theories, by using a geometric interpretation due to Biquard et al. This duality may be relevant for understanding Seiberg's conjectured duality Nc ↔ Nf-Nc in N = 1 SUSY SU(Nc) gauge theories.


1997 ◽  
Vol 399 (1-2) ◽  
pp. 75-82 ◽  
Author(s):  
Takuhiro Kitao ◽  
Seiji Terashima ◽  
Sung-Kil Yang
Keyword(s):  

Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


2020 ◽  
Vol 124 (9) ◽  
Author(s):  
J. Xu ◽  
Owen Benton ◽  
A. T. M. N. Islam ◽  
T. Guidi ◽  
G. Ehlers ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document