scholarly journals A real-coded genetic algorithm for training recurrent neural networks

2001 ◽  
Vol 14 (1) ◽  
pp. 93-105 ◽  
Author(s):  
A. Blanco ◽  
M. Delgado ◽  
M.C. Pegalajar
SINERGI ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 29
Author(s):  
Widi Aribowo

Load shedding plays a key part in the avoidance of the power system outage. The frequency and voltage fluidity leads to the spread of a power system into sub-systems and leads to the outage as well as the severe breakdown of the system utility.  In recent years, Neural networks have been very victorious in several signal processing and control applications.  Recurrent Neural networks are capable of handling complex and non-linear problems. This paper provides an algorithm for load shedding using ELMAN Recurrent Neural Networks (RNN). Elman has proposed a partially RNN, where the feedforward connections are modifiable and the recurrent connections are fixed. The research is implemented in MATLAB and the performance is tested with a 6 bus system. The results are compared with the Genetic Algorithm (GA), Combining Genetic Algorithm with Feed Forward Neural Network (hybrid) and RNN. The proposed method is capable of assigning load releases needed and more efficient than other methods. 


Author(s):  
Heeralal Gargama ◽  
Sanjay K Chaturvedi ◽  
Awalendra K Thakur

The conventional approaches for electromagnetic shielding structures’ design, lack the incorporation of uncertainty in the design variables/parameters. In this paper, a reliability-based design optimization approach for designing electromagnetic shielding structure is proposed. The uncertainties/variability in the design variables/parameters are dealt with using the probabilistic sufficiency factor, which is a factor of safety relative to a target probability of failure. Estimation of probabilistic sufficiency factor requires performance function evaluation at every design point, which is extremely computationally intensive. The computational burden is reduced greatly by evaluating design responses only at the selected design points from the whole design space and employing artificial neural networks to approximate probabilistic sufficiency factor as a function of design variables. Subsequently, the trained artificial neural networks are used for the probabilistic sufficiency factor evaluation in the reliability-based design optimization, where optimization part is processed with the real-coded genetic algorithm. The proposed reliability-based design optimization approach is applied to design a three-layered shielding structure for a shielding effectiveness requirement of ∼40 dB, used in many industrial/commercial applications, and for ∼80 dB used in the military applications.


Sign in / Sign up

Export Citation Format

Share Document