scholarly journals Agitoxin Footprinting the Shaker Potassium Channel Pore

Neuron ◽  
1996 ◽  
Vol 16 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Adrian Gross ◽  
Roderick MacKinnon
1998 ◽  
Vol 112 (2) ◽  
pp. 243-257 ◽  
Author(s):  
Eva M. Ogielska ◽  
Richard W. Aldrich

Under physiological conditions, potassium channels are extraordinarily selective for potassium over other ions. However, in the absence of potassium, certain potassium channels can conduct sodium. Sodium flux is blocked by the addition of low concentrations of potassium. Potassium affinity, and therefore the ability to block sodium current, varies among potassium channel subtypes (Korn, S.J., and S.R. Ikeda. 1995. Science. 269:410–412; Starkus, J.G., L. Kuschel, M.D. Rayner, and S.H. Heinemann. 1997. J. Gen. Physiol. 110:539–550). The Shaker potassium channel conducts sodium poorly in the presence of very low (micromolar) potassium due to its high potassium affinity (Starkus, J.G., L. Kuschel, M.D. Rayner, and S.H. Heinemann. 1997. J. Gen. Physiol. 110:539–550; Ogielska, E.M., and R.W. Aldrich. 1997. Biophys. J. 72:A233 [Abstr.]). We show that changing a single residue in S6, A463C, decreases the apparent internal potassium affinity of the Shaker channel pore from the micromolar to the millimolar range, as determined from the ability of potassium to block the sodium currents. Independent evidence that A463C decreases the apparent affinity of a binding site in the pore comes from a study of barium block of potassium currents. The A463C mutation decreases the internal barium affinity of the channel, as expected if barium blocks current by binding to a potassium site in the pore. The decrease in the apparent potassium affinity in A463C channels allows further study of possible ion interactions in the pore. Our results indicate that sodium and potassium can occupy the pore simultaneously and that multiple occupancy results in interactions between ions in the channel pore.


2010 ◽  
Vol 98 (3) ◽  
pp. 521a
Author(s):  
Tamer M. Gamal El-Din ◽  
Hansjakob Heldstab ◽  
Claudia Lehmann ◽  
Nikolaus G. Greeff

2011 ◽  
Vol 100 (3) ◽  
pp. 367a
Author(s):  
Yajamana Ramu ◽  
Yanping Xu ◽  
Zhe Lu

2019 ◽  
Vol 116 (3) ◽  
pp. 101a
Author(s):  
Carlos Alberto ◽  
Z. Bassetto Jr ◽  
Joao Luis Carvalho-de-Souza ◽  
Francisco Bezanilla

2002 ◽  
Vol 82 (6) ◽  
pp. 2995-3002 ◽  
Author(s):  
Oliver Ohlenschläger ◽  
Hironobu Hojo ◽  
Ramadurai Ramachandran ◽  
Matthias Görlach ◽  
Parvez I. Haris

Sign in / Sign up

Export Citation Format

Share Document