cation channel
Recently Published Documents


TOTAL DOCUMENTS

1021
(FIVE YEARS 121)

H-INDEX

90
(FIVE YEARS 6)

Nanoscale ◽  
2022 ◽  
Author(s):  
Wei-Hsu Chen ◽  
Taiki Onoe ◽  
Masao Kamimura

In this study, we developed a novel biodegradable/photothermal polymer micelle-based remote-activation method for a temperature-sensitive ion channel, namely transient receptor potential cation channel subfamily V member 1 (TRPV1). Biodegradable/photothermal polymer...


Author(s):  
Zhen Wang ◽  
Yiling Fu ◽  
Jussara M. do Carmo ◽  
Alexandre A. da Silva ◽  
Xuan Li ◽  
...  

Diabetes (DM) and hypertension (HTN) are major risk factors for chronic kidney injury, together accounting for >70% of end-stage renal disease. In this study, we assessed whether DM and HTN interact synergistically to promote kidney dysfunction and if Transient Receptor Potential Cation Channel 6 (TRPC6) contributes to this synergism. In wild type (WT; B6/129s background) and TRPC6 knockout (KO) mice, DM was induced by streptozotocin injection to increase fasting glucose levels to 250-350 mg/dL. HTN was induced by aorta constriction (AC) between the renal arteries. AC increased blood pressure (BP) by ~25 mmHg in the right kidney (above AC) while BP in the left kidney (below AC) returned to near normal after 8 weeks, with both kidneys exposed to the same levels of blood glucose, circulating hormones, and neural influences. Kidneys of WT mice exposed to DM or HTN alone had only mild glomerular injury and urinary albumin excretion. In contrast, kidneys exposed to DM plus HTN (WT-DM+AC mice) for 8 weeks had much greater increases in albumin excretion and histological injury. Marked increased apoptosis was also observed in the right kidneys of WT-DM+AC mice. In contrast, in TRPC6 KO-DM+AC mice, the right kidneys exposed to the same levels of high BP and high glucose had lower albumin excretion, less glomerular damage and apoptotic cell injury compared to right kidneys of WT-DM+AC mice. Our results suggest that TRPC6 may contribute to the interaction of DM and HTN to promote kidney dysfunction and apoptotic cell injury.


2021 ◽  
pp. MOLPHARM-AR-2021-000349
Author(s):  
Erick J. Carlson ◽  
Gunda Ingrid Georg ◽  
Jon Eric Hawkinson
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adam Lewis ◽  
Vilius Kurauskas ◽  
Marco Tonelli ◽  
Katherine Henzler-Wildman

AbstractThe selectivity filter (SF) determines which ions are efficiently conducted through ion channel pores. NaK is a non-selective cation channel that conducts Na+ and K+ with equal efficiency. Crystal structures of NaK suggested a rigid SF structure, but later solid-state NMR and MD simulations questioned this interpretation. Here, we use solution NMR to characterize how bound Na+ vs. K+ affects NaK SF structure and dynamics. We find that the extracellular end of the SF is flexible on the ps-ns timescale regardless of bound ion. On a slower timescale, we observe a structural change between the Na+ and K+-bound states, accompanied by increased structural heterogeneity in Na+. We also show direct evidence that the SF structure is communicated to the pore via I88 on the M2 helix. These results support a dynamic SF with multiple conformations involved in non-selective conduction. Our data also demonstrate allosteric coupling between the SF and pore-lining helices in a non-selective cation channel that is analogous to the allosteric coupling previously demonstrated for K+-selective channels, supporting the generality of this model.


2021 ◽  
Vol 12 ◽  
Author(s):  
David Monedero Alonso ◽  
Laurent Pérès ◽  
Aline Hatem ◽  
Guillaume Bouyer ◽  
Stéphane Egée

Handbooks of physiology state that the strategy adopted by red blood cells (RBCs) to preserve cell volume is to maintain membrane permeability for cations at its minimum. However, enhanced cation permeability can be measured and observed in specific physiological and pathophysiological situations such as in vivo senescence, storage at low temperature, sickle cell anemia and many other genetic defects affecting transporters, membrane or cytoskeletal proteins. Among cation pathways, cation channels are able to dissipate rapidly the gradients that are built and maintained by the sodium and calcium pumps. These situations are very well-documented but a mechanistic understanding of complex electrophysiological events underlying ion transports is still lacking. In addition, non-selective cation (NSC) channels present in the RBC membrane have proven difficult to molecular identification and functional characterization. For instance, NSC channel activity can be elicited by Low Ionic Strength conditions (LIS): the associated change in membrane potential triggers its opening in a voltage dependent manner. But, whereas this depolarizing media produces a spectacular activation of NSC channel, Gárdos channel-evoked hyperpolarization's have been shown to induce sodium entry through a pathway thought to be conductive and termed Pcat. Using the CCCP method, which allows to follow fast changes in membrane potential, we show here (i) that hyperpolarization elicited by Gárdos channel activation triggers sodium entry through a conductive pathway, (ii) that chloride conductance inhibition unveils such conductive cationic conductance, (iii) that the use of the specific chloride conductance inhibitor NS3623 (a derivative of Neurosearch compound NS1652), at concentrations above what is needed for full anion channel block, potentiates the non-selective cation conductance. These results indicate that a non-selective cation channel is likely activated by the changes in the driving force for cations rather than a voltage dependence mechanism per se.


2021 ◽  
Vol 12 ◽  
Author(s):  
Micah K. Madrid ◽  
Jaclyn A. Brennan ◽  
Rose T. Yin ◽  
Helen S. Knight ◽  
Igor R. Efimov

Optogenetic technology provides researchers with spatiotemporally precise tools for stimulation, sensing, and analysis of function in cells, tissues, and organs. These tools can offer low-energy and localized approaches due to the use of the transgenically expressed light gated cation channel Channelrhodopsin-2 (ChR2). While the field began with many neurobiological accomplishments it has also evolved exceptionally well in animal cardiac research, both in vitro and in vivo. Implantable optical devices are being extensively developed to study particular electrophysiological phenomena with the precise control that optogenetics provides. In this review, we highlight recent advances in novel implantable optogenetic devices and their feasibility in cardiac research. Furthermore, we also emphasize the difficulties in translating this technology toward clinical applications and discuss potential solutions for successful clinical translation.


Author(s):  
Geetanjali Jain ◽  
Gourab Das ◽  
Rakhi Malhotra ◽  
Sateesh Ramchandran ◽  
Nagaraja M. Phani ◽  
...  

AbstractHOMG1 (hypomagnesemia 1, intestinal) or hypomagnesemia with secondary hypocalcemia is a rare autosomal recessive disorder of magnesium metabolism, characterized by impaired magnesium absorption. This disorder may mimic other conditions presenting with neonatal seizures. Here, we report an infant diagnosed to have hypomagnesemia with secondary hypocalcemia due to novel variants in TRPM6 gene.


2021 ◽  
Vol 59 (4) ◽  
pp. 329-339
Author(s):  
Kwon Moo Park ◽  
Sun-Don Kim ◽  
Jin Bong Park ◽  
Sung-Jong Hong ◽  
Pan Dong Ryu

Ion channels are important targets of anthelmintic agents. In this study, we identified 3 types of ion channels in Ascaris suum tissue incorporated into planar lipid bilayers using an electrophysiological technique. The most frequent channel was a large-conductance cation channel (209 pS), which accounted for 64.5% of channels incorporated (n=60). Its open-state probability (Po) was ~0.3 in the voltage range of –60~+60 mV. A substate was observed at 55% of the main-state. The permeability ratio of Cl- to K+ (PCl/PK) was ~0.5 and PNa/PK was 0.81 in both states. Another type of cation channel was recorded in 7.5% of channels incorporated (n=7) and discriminated from the large-conductance cation channel by its smaller conductance (55.3 pS). Its Po was low at all voltages tested (~0.1). The third type was an anion channel recorded in 27.9% of channels incorporated (n=26). Its conductance was 39.0 pS and PCl/PK was 8.6±0.8. Po was ~1.0 at all tested potentials. In summary, we identified 2 types of cation and 1 type of anion channels in Ascaris suum. Gating of these channels did not much vary with voltage and their ionic selectivity is rather low. Their molecular nature, functions, and potentials as anthelmintic drug targets remain to be studied further.


Sign in / Sign up

Export Citation Format

Share Document