specific alternative
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 71)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
pp. 1-S6
Author(s):  
Dominick Gamache ◽  
Philippe Leclerc ◽  
Maude Payant ◽  
Kristel Mayrand ◽  
Marie-Chloé Nolin ◽  
...  

The Alternative DSM-5 Model for Personality Disorders (AMPD) retains six specific personality disorders (PDs) that can be diagnosed based on Criterion A level of impairment and Criterion B maladaptive facets. Those specific diagnoses are still underresearched, despite the preference expressed by most PD scholars for a mixed/hybrid classification. This study explores the possibility of using Criterion A and B self-report questionnaires to extract the specific AMPD diagnoses. Plausible prevalence estimates were found in three samples (outpatient PD, private practice, community; N = 766) using the facet score > 2 and t score > 65 methods for determining the presence of a Criterion B facet; diagnoses had meaningful correlations with external variables. This study provides evidence—albeit preliminary—that the extraction of the specific AMPD PDs from self-report questionnaires might be a viable avenue. Ultimately, it could promote the use and dissemination of those diagnoses for screening purposes in clinical and research settings.


2021 ◽  
Author(s):  
Wen Zhang ◽  
Quanyou Wu ◽  
Guoliang Li ◽  
Zhenrong Yang ◽  
Defeng Kong ◽  
...  

Abstract Circulating tumor cell (CTC) clusters possess a much higher capability to seed metastasis than single CTCs. However, the mechanism underlying this phenomenon is still elusive and no reports have investigated the role of posttranscriptional RNA regulation in CTC clusters. Here, we compared alternative splicing (AS) and alternative polyadenylation (APA) profiles between single CTCs and CTC clusters. 994 and 836 AS events were identified in single CTCs and CTC clusters, separately. About ~20% of AS events exhibited alterations between both cell types. The differential splicing of SRSF6 was a core event that caused AS profiles’ disturbance and made CTC clusters more dangerous. Concerning APA, we identified global 3’ UTRs lengthening in CTC clusters compared with single CTCs. This change was mainly regulated by 14 core APA factors, especially PPP1CA. The altered APA profiles boosted the cell cycle of CTC clusters and reflected that CTC clusters endured less oxidative stress. Our study investigated the posttranscriptional regulation mechanisms in CTC clusters, found that the perturbation of AS and APA contributed to the superiority of CTC clusters compared with single CTCs, and laid the foundation for developing antisense oligonucleotides that inhibit metastasis by reducing CTC clusters.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel F. Escobar ◽  
Pablo Díaz ◽  
Diego Díaz-Dinamarca ◽  
Rodrigo Puentes ◽  
Pedro Alarcón ◽  
...  

In January 2021, the Chilean city of Concepción experienced a second wave of coronavirus 2019 (COVID-19) while in early April 2021, the entire country faced the same situation. This outbreak generated the need to modify and validate a method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in saliva, thereby expanding the capacity and versatility of testing for COVID-19. This study was conducted in February 2021 in the Chilean city of Concepción during which time, the town was under total quarantine. The study participants were mostly symptomatic (87.4%), not hospitalized, and attended care centers because of their health status rather than being asked by the researchers. People coming to the health center in Concepción to be tested for COVID-19 (via reverse transcriptase polymerase chain reaction [RT-PCR]) from a specimen of nasopharyngeal swab (NPS) were then invited to participate in this study. A total of 131 participants agreed to sign an informed consent and to provide saliva and NPS specimens to validate a method in terms of sensitivity, specificity, and statistical analysis of the cycle threshold (Ct) values from the RT-PCR. Calculations pertaining to the 127 participants who were ultimately included in the analysis showed sensitivity and specificity at 94.34% (95% CI: 84.34–98.82%) and 98.65% (95% CI: 92.70–99.97%), respectively. The saliva specimen showed a performance comparable to NPS as demonstrated by the diagnostic parameters. This RT-PCR method from the saliva specimen is a highly sensitive and specific alternative compared to the reference methodology, which uses the NPS specimen. This modified and validated method is intended for use in the in vitro diagnosis of SARS-CoV-2, which provides health authorities in Chile and local laboratories with a real testing alternative to RT-PCR from NPS.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257350
Author(s):  
Rogério Fernandes Carvalho ◽  
Monike da Silva Oliveira ◽  
Juliane Ribeiro ◽  
Isac Gabriel Cunha dos Santos ◽  
Katyane de Sousa Almeida ◽  
...  

SARS-CoV-2 has spread worldwide and has become a global health problem. As a result, the demand for inputs for diagnostic tests rose dramatically, as did the cost. Countries with inadequate infrastructure experience difficulties in expanding their qPCR testing capacity. Therefore, the development of sensitive and specific alternative methods is essential. This study aimed to develop, standardize, optimize, and validate conventional RT-PCR targeting the N gene of SARS-CoV-2 in naso-oropharyngeal swab samples compared to qPCR. Using bioinformatics tools, specific primers were determined, with a product expected to be 519 bp. The reaction conditions were optimized using a commercial positive control, and the detection limit was determined to be 100 fragments. To validate conventional RT-PCR, we determined a representative sampling of 346 samples from patients with suspected infection whose diagnosis was made in parallel with qPCR. A sensitivity of 92.1% and specificity of 100% were verified, with an accuracy of 95.66% and correlation coefficient of 0.913. Under current Brazilian conditions, this method generates approximately 60% savings compared to qPCR costs. Conventional RT-PCR, validated herein, showed sufficient results for the detection of SARS-CoV-2 and can be used as an alternative for epidemiological studies and interspecies correlations.


2021 ◽  
Author(s):  
Itai Yanai ◽  
Bo Xia ◽  
Weimin Zhang ◽  
Aleksandra Wudzinska ◽  
Emily Huang ◽  
...  

Abstract The loss of the tail is one of the main anatomical evolutionary changes to have occurred along the lineage leading to humans and to the “anthropomorphous apes”1,2. This morphological reprogramming in the ancestral hominoids has been long considered to have accommodated a characteristic style of locomotion and contributed to the evolution of bipedalism in humans3–5. Yet, the precise genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Primate genome sequencing projects have made possible the identification of causal links between genotypic and phenotypic changes6–8, and enable the search for hominoid-specific genetic elements controlling tail development9. Here, we present evidence that tail-loss evolution was mediated by the insertion of an individual Alu element into the genome of the hominoid ancestor. We demonstrate that this Alu element – inserted into an intron of the TBXT gene (also called T or Brachyury10–12) – pairs with a neighboring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated a mouse model that mimics the expression of human TBXT products by expressing both full-length and exon-skipped isoforms of the mouse TBXT ortholog. We found that mice with this genotype exhibit the complete absence of a tail or a shortened tail, supporting the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype, albeit with incomplete penetrance. We further noted that mice homozygous for the exon-skipped isoforms exhibited embryonic spinal cord malformations, resembling a neural tube defect condition, which affects ~1/1000 human neonates13. We propose that selection for the loss of the tail along the hominoid lineage was associated with an adaptive cost of potential neural tube defects and that this ancient evolutionary trade-off may thus continue to affect human health today.


2021 ◽  
Author(s):  
Bo Xia ◽  
Weimin Zhang ◽  
Aleksandra Wudzinska ◽  
Emily Huang ◽  
Ran Brosh ◽  
...  

The loss of the tail is one of the main anatomical evolutionary changes to have occurred along the lineage leading to humans and to the "anthropomorphous apes"1,2. This morphological reprogramming in the ancestral hominoids has been long considered to have accommodated a characteristic style of locomotion and contributed to the evolution of bipedalism in humans3-5. Yet, the precise genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Primate genome sequencing projects have made possible the identification of causal links between genotypic and phenotypic changes6-8, and enable the search for hominoid-specific genetic elements controlling tail development9. Here, we present evidence that tail-loss evolution was mediated by the insertion of an individual Alu element into the genome of the hominoid ancestor. We demonstrate that this Alu element - inserted into an intron of the TBXT gene (also called T or Brachyury10-12) - pairs with a neighboring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated a mouse model that mimics the expression of human TBXT products by expressing both full-length and exon-skipped isoforms of the mouse TBXT ortholog. We found that mice with this genotype exhibit the complete absence of a tail or a shortened tail, supporting the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype, albeit with incomplete penetrance. We further noted that mice homozygous for the exon-skipped isoforms exhibited embryonic spinal cord malformations, resembling a neural tube defect condition, which affects ~1/1000 human neonates13. We propose that selection for the loss of the tail along the hominoid lineage was associated with an adaptive cost of potential neural tube defects and that this ancient evolutionary trade-off may thus continue to affect human health today.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3929
Author(s):  
Anna Wojtuszkiewicz ◽  
Inge van der Werf ◽  
Stephan Hutter ◽  
Wencke Walter ◽  
Constance Baer ◽  
...  

Despite substantial progress achieved in unraveling the genetics of AML in the past decade, its treatment outcome has not substantially improved. Therefore, it is important to better understand how genetic mutations translate to phenotypic features of AML cells to further improve response predictions and to find innovative therapeutic approaches. In this respect, aberrant splicing is a crucial contributor to the pathogenesis of hematological malignancies. Thus far, altered splicing is well characterized in relation to splicing factor mutations in AML. However, splicing profiles associated with mutations in other genes remain largely unexplored. In this study, we explored differential splicing profiles associated with two of the most common aberrations in AML: FLT3-ITD and NPM1 mutations. Using RNA-sequencing data of a total of 382 primary AML samples, we found that the co-occurrence of FLT3-ITD and mutated NPM1 is associated with differential splicing of FAB-type specific gene sets. Despite the FAB-type specificity of particular gene sets, the primary functions perturbed by differential splicing in all three FAB types include cell cycle control and DNA damage response. Interestingly, we observed functional divergence between alternatively spliced and differentially expressed genes in FLT3-ITD+/NPM1+ samples in all analyzed FAB types, with differential expression affecting genes involved in hematopoietic differentiation. Altogether, these observations indicate that concomitant FLT3-ITD and mutated NPM1 are associated with the maturation state-specific differential splicing of genes with potential oncogenic relevance.


2021 ◽  
Author(s):  
Charoula Peta ◽  
Emmanouella Tsirimonaki ◽  
Constantinos Fedonidis ◽  
Xeni Koliou ◽  
Nikos Sakellaridis ◽  
...  

Neurofibromatosis type 1, NF-1, is a common monogenic (NF1) disease, characterized by highly variable clinical presentation and high predisposition for tumors, especially those of astrocytic origin (low- to high-grade gliomas). Unfortunately, very few genotype–phenotype correlations have been possible, and the numerous identified mutations do not offer help for prognosis and patient counselling. Whole gene deletion in animals does not successfully model the disease, as NF-1 cases caused by point mutations could be differentially affected by cell type-specific alternative splice variants of NF1. In this chapter, we will discuss the differential Microtubule-Associated-Protein (MAP) properties of NLS or ΔNLS neurofibromins, produced by the alternatively splicing of exon 51, which also contains a Nuclear Localization Sequence (NLS), in the assembly of the mitotic spindle and in faithful genome transmission. We will also commend on the major theme that emerges about NLS-containing tumor suppressors that function as mitotic MAPs.


Leukemia ◽  
2021 ◽  
Author(s):  
Luis V. Valcárcel ◽  
Ane Amundarain ◽  
Marta Kulis ◽  
Stella Charalampopoulou ◽  
Ari Melnick ◽  
...  

AbstractClinical and genetic risk factors are currently used in multiple myeloma (MM) to stratify patients and to design specific therapies. However, these systems do not capture the heterogeneity of the disease supporting the development of new prognostic factors. In this study, we identified active promoters and alternative active promoters in 6 different B cell subpopulations, including bone-marrow plasma cells, and 32 MM patient samples, using RNA-seq data. We find that expression initiated at both regular and alternative promoters was specific of each B cell subpopulation or MM plasma cells, showing a remarkable level of consistency with chromatin-based promoter definition. Interestingly, using 595 MM patient samples from the CoMMpass dataset, we observed that the expression derived from some alternative promoters was associated with lower progression-free and overall survival in MM patients independently of genetic alterations. Altogether, our results define cancer-specific alternative active promoters as new transcriptomic features that can provide a new avenue for prognostic stratification possibilities in patients with MM.


Sign in / Sign up

Export Citation Format

Share Document