P029 Direct evaluation of intra-cortical inhibition and facilitation balance in human motor cortex: an EEG-paired pulse TMS study

2008 ◽  
Vol 119 ◽  
pp. S78
Author(s):  
Florinda Ferreri ◽  
Patrizio Pasqualetti ◽  
David Ponzo ◽  
Sara Maatta ◽  
Fabio Ferrarelli ◽  
...  
2013 ◽  
Vol 109 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Nigel C. Rogasch ◽  
Zafiris J. Daskalakis ◽  
Paul B. Fitzgerald

Long-interval cortical inhibition (LICI) refers to suppression of neuronal activity following paired-pulse transcranial magnetic stimulation (TMS) with interstimulus intervals (ISIs) between 50 and 200 ms. LICI can be measured either from motor-evoked potentials (MEPs) in small hand muscles or directly from the cortex using concurrent electroencephalography (EEG). However, it remains unclear whether EEG inhibition reflects similar mechanisms to MEP inhibition. Eight healthy participants received single- and paired-pulse TMS (ISI = 100 ms) over the motor cortex. MEPs were measured from a small hand muscle (first dorsal interosseus), whereas early (P30, P60) and late (N100) TMS-evoked cortical potentials (TEPs) were measured over the motor cortex using EEG. Conditioning and test TMS intensities were altered, and modulation of LICI strength was measured using both methods. LICI of MEPs and both P30 and P60 TEPs increased in strength with increasing conditioning intensities and decreased with increasing test intensities. LICI of N100 TEPs remained unchanged across all conditions. In addition, MEP and P30 LICI strength correlated with the slope of the N100 evoked by the conditioning pulse. LICI of early and late TEP components was differentially modulated with altered TMS intensities, suggesting independent underlying mechanisms. LICI of P30 is consistent with inhibition of cortical excitation similar to MEPs, whereas LICI of N100 may reflect presynaptic autoinhibition of inhibitory interneurons. The N100 evoked by the conditioning pulse is consistent with the mechanism responsible for LICI, most likely GABAB-mediated inhibition of cortical activity.


1998 ◽  
Vol 509 (2) ◽  
pp. 607-618 ◽  
Author(s):  
Ritsuko Hanajima ◽  
Yoshikazu Ugawa ◽  
Yasuo Terao ◽  
Katsuyuki Sakai ◽  
Toshiaki Furubayashi ◽  
...  

2007 ◽  
Vol 118 (12) ◽  
pp. 2672-2682 ◽  
Author(s):  
Masashi Hamada ◽  
Ritsuko Hanajima ◽  
Yasuo Terao ◽  
Noritoshi Arai ◽  
Toshiaki Furubayashi ◽  
...  

2013 ◽  
Vol 109 (1) ◽  
pp. 106-112 ◽  
Author(s):  
R. F. H. Cash ◽  
F. L. Mastaglia ◽  
G. W. Thickbroom

A single transcranial magnetic stimulation (TMS) pulse typically evokes a short series of spikes in corticospinal neurons [known as indirect (I)-waves] which are thought to arise from transynaptic input. Delivering a second pulse at inter-pulse intervals (IPIs) corresponding to the timing of these I-waves leads to a facilitation of the response, and if stimulus pairs are delivered repeatedly, a persistent LTP-like increase in excitability can occur. This has been demonstrated at an IPI of 1.5 ms, which corresponds to the first I-wave interval, in an intervention referred to as ITMS (I-wave TMS), and it has been argued that this may have similarities with timing-dependent plasticity models. Consequently, we hypothesized that if the second stimulus is delivered so as not to coincide with I-wave timing, it should lead to LTD. We performed a crossover study in 10 subjects in which TMS doublets were timed to coincide (1.5-ms IPI, ITMS1.5) or not coincide (2-ms IPI, ITMS2) with I-wave firing. Single pulse motor-evoked potential (MEP) amplitude, resting motor threshold (RMT), and short-interval cortical inhibition (SICI) were measured from the first dorsal interosseous (FDI) muscle. After ITMS1.5 corticomotor excitability was increased by ∼60% for 15 min ( P < 0.05) and returned to baseline by 20 min. Increasing the IPI by just 500 μs to 2 ms reversed the aftereffect, and MEP amplitude was significantly reduced (∼35%, P < 0.05) for 15 min before returning to baseline. This reduction was not associated with an increase in SICI, suggesting a reduction in excitatory transmission rather than an increase in inhibitory efficacy. RMT also remained unchanged, suggesting that these changes were not due to changes in membrane excitability. Amplitude-matching ITMS2 did not modulate excitability. The results are consistent with timing-dependent synaptic LTP/D-like effects and suggest that there are plasticity mechanisms operating in the human motor cortex with a temporal resolution of the order of a few hundreds of microseconds.


2015 ◽  
Vol 8 (3) ◽  
pp. 660-661 ◽  
Author(s):  
Daniel T. Corp ◽  
Mark A. Rogers ◽  
Vincenzo Di Lazzaro ◽  
Alan J. Pearce

Sign in / Sign up

Export Citation Format

Share Document