resting motor threshold
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 92)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Lifu Deng ◽  
Olga Lucia Gamboa ◽  
Moritz Dannhauer ◽  
Anshu Jonnalagadda ◽  
Rena Hamdan ◽  
...  

Transcranial magnetic stimulation (TMS) has become an important technique in both scientific and clinical practices, and yet our understanding of how the brain responds to TMS is still limited. Concurrent neuroimaging during TMS may bridge this gap, and emerging evidence suggests widespread that modulatory effects of TMS may be best captured through changes in functional connectivity between distributed networks, rather than local changes in cortical activity. However, the relationship between TMS stimulation parameters and evoked changes in functional connectivity is unknown. In this study, 24 healthy volunteers received concurrent TMS-fMRI while performing a dot-motion direction discrimination task. An MR-compatible coil was used to apply trains of three pulses at 10 Hz rTMS over the primary visual cortex (V1) at the onset of the dot stimuli with four levels of stimulation intensity (20%, 40%, 80%, and 120% of resting motor threshold, RMT). Behavioral results demonstrated impairment of motion discrimination at 80% RMT. FMRI results yielded three findings. First, functional connectivity between visual and non-visual areas increased as a function of rTMS intensity. Second, connectivity within the visual network was positively associated with motion accuracy, while the connectivity between visual and non-visual regions was negatively associated with motion accuracy. Lastly, we found that reductions in the similarity between functional and structural connectivity associated with increasing TMS intensity were constrained to the visual network. These findings demonstrate spatially dependent nonlinear effects of TMS intensity on brain functional connectivity that proceed beyond the site of stimulation and influence associated behavior.


2022 ◽  
Author(s):  
Isabel Alkhasli ◽  
Felix M. Mottaghy ◽  
Ferdinand Binkofski ◽  
Katrin Sakreida

Abstract Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) have been shown to modulate functional connectivity. Their specific effects seem to be dependent on the pre-existing neuronal state. We aimed to precondition frontal networks using tDCS and subsequently stimulate the left dorsolateral prefrontal cortex (lDLPFC) using TMS. Thirty healthy participants underwent either excitatory, inhibitory or sham tDCS for 10 min, as well as an excitatory intermittent theta burst (iTBS) protocol (600 pulses in 190 s, 20 x 2 s trains), applied over the lDLPFC at 90% of the individual resting motor threshold. Functional connectivity was measured in three task-free, 10-min-long baseline resting state fMRI sessions, immediately before and after tDCS, as well as after iTBS. Connectivity analyses between stimulation site and all other brain voxels, contrasting the interaction effect between the experimental tDCS groups (excitatory vs inhibitory) and the repeated measure (post tDCS vs. post TMS), revealed significantly affected voxels bilaterally in the anterior cingulate and paracingulate gyri, the caudate nuclei, the insula and operculum cortices, as well as the Heschl’s gyrus. ROI-to-ROI analyses additionally showed temporo-parietal-striatal and temporo-parietal-fronto-cingulate differences between the anodal and cathodal group post tDCS, as well as striatal-temporo-parietal anodal-cathodal differences and frontostriatal cathodal-sham group differences post TMS. Excitatory iTBS to a tDCS-inhibited lDLPFC yielded stronger functional connectivity to various areas, as compared to excitatory iTBS to a tDCS-enhanced prefrontal cortex. Results demonstrate complex, whole-brain stimulation effects, most-likely facilitated by cortical homeostatic control mechanisms, as well as the feasibility of using tDCS to modulate TMS effects.


2021 ◽  
pp. 1-8
Author(s):  
Jauhtai Cheng ◽  
J. Kaci Fairchild ◽  
Margaret W. McNerney ◽  
Art Noda ◽  
J. Wesson Ashford ◽  
...  

Background: Despite decades of research efforts, current treatments for Alzheimer’s disease (AD) are of limited effectiveness and do not halt the progression of the disease and associated cognitive decline. Studies have shown that repetitive transcranial magnetic stimulation (rTMS) may improve cognition. Objective: We conducted a pilot study to investigate the effect of rTMS on cognitive function in Veterans with numerous medical comorbidities. Methods: Participants underwent 20 sessions, over the course of approximately 4 weeks, of 10 Hz rTMS at the left dorsolateral prefrontal cortex with intensity of 120% resting motor threshold. Outcome measures including memory, language, verbal fluency, and executive functions were acquired at baseline, end of treatment, and 4 months after the last rTMS session. Twenty-six Veterans completed the study (13 in the active rTMS group, 13 in the sham rTMS group). Results: The study protocol was well-tolerated. Active, compared to sham, rTMS showed improved auditory-verbal memory at the end of treatment and at 4-month follow-up. However, the active rTMS group demonstrated a trend in decreased semantic verbal fluency at the end of treatment and at 4-month follow up. Conclusion: These preliminary results show rTMS is safe in general in this elderly Veteran population with multiple co-morbidities. Patients in the sham group showed an expected, slight decline in the California Verbal Learning Test scores over the course of the study, whereas the active treatment group showed a slight improvement at the 4-month post-treatment follow up. These effects need to be confirmed by studies of larger sample sizes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261373
Author(s):  
Giuseppe Lanza ◽  
Francesco Fisicaro ◽  
Carmela Cinzia D’Agate ◽  
Raffaele Ferri ◽  
Mariagiovanna Cantone ◽  
...  

Background Celiac disease (CD) is now viewed as a systemic disease with multifaceted clinical manifestations. Among the extra-intestinal features, neurological and neuropsychiatric symptoms are still a diagnostic challenge, since they can precede or follow the diagnosis of CD. In particular, it is well known that some adults with CD may complain of cognitive symptoms, that improve when the gluten-free diet (GFD) is started, although they may re-appear after incidental gluten intake. Among the neurophysiological techniques, motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) can non-invasively probe in vivo the excitation state of cortical areas and cortico-spinal conductivity, being also able to unveil preclinical impairment in several neurological and psychiatric disorders, as well as in some systemic diseases affecting the central nervous system (CNS), such as CD. We previously demonstrated an intracortical disinhibition and hyperfacilitation of MEP responses to TMS in newly diagnosed patients. However, no data are available on the central cholinergic functioning indexed by specific TMS measures, such as the short-latency afferent inhibition (SAI), which might represent the neurophysiological correlate of cognitive changes in CD patients, also at the preclinical level. Methods Cognitive and depressive symptoms were screened by means of the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively, in 15 consecutive de novo CD patients and 15 healthy controls. All patients were on normal diet at the time of the enrolment. Brain computed tomography (CT) was performed in all patients. SAI, recorded at two interstimulus intervals (2 and 8 ms), was assessed as the percentage amplitude ratio between the conditioned and the unconditioned MEP response. Resting motor threshold, MEP amplitude and latency, and central motor conduction time were also measured. Results The two groups were comparable for age, sex, anthropometric features, and educational level. Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all patients. Scores at MoCA and HDRS were significantly worse in patients than in controls. The comparison of TMS data between the two groups revealed no statistically significant difference for all measures, including SAI at both interstimulus intervals. Conclusions Central cholinergic functioning explored by the SAI of the motor cortex resulted to be not affected in these de novo CD patients compared to age-matched healthy controls. Although the statistically significant difference in MoCA, an overt cognitive impairment was not clinically evident in CD patients. Coherently, to date, no study based on TMS or other diagnostic techniques has shown any involvement of the central acetylcholine or the cholinergic fibers within the CNS in CD. This finding might add support to the vascular inflammation hypothesis underlying the so-called “gluten encephalopathy”, which seems to be due to an aetiology different from that of the cholinergic dysfunction. Longitudinal studies correlating clinical, TMS, and neuroimaging data, both before and after GFD, are needed.


2021 ◽  
pp. 096452842110575
Author(s):  
Francisco Xavier de Brito ◽  
Cleber Luz-Santos ◽  
Janine Ribeiro Camatti ◽  
Rodrigo Jorge de Souza da Fonseca ◽  
Giovana Suzarth ◽  
...  

Introduction: There is evidence that electroacupuncture (EA) acts through the modulation of brain activity, but little is known about its influence on corticospinal excitability of the primary motor cortex (M1). Objective: To investigate the influence of EA parameters on the excitability of M1 in healthy individuals. Methods: A parallel, double blind, randomized controlled trial in healthy subjects, evaluating the influence of an EA intervention on M1 excitability. Participants had a needle inserted at LI4 in the dominant hand and received electrical stimulation of different frequencies (10 or 100 Hz) and amplitude (sensory or motor threshold) for 20 min. In the control group, only a brief (30 s) electrical stimulation was applied. Single and paired pulse transcranial magnetic stimulation coupled with electromyography was applied before and immediately after the EA intervention. Resting motor threshold, motor evoked potential, short intracortical inhibition and intracortical facilitation were measured. Results: EA increased corticospinal excitability of M1 compared to the control group only when administered with a frequency of 100 Hz at the sensory threshold ( p < 0.05). There were no significant changes in the other measures. Conclusion: The results suggest that EA with an intensity level at the sensorial threshold and 100 Hz frequency increases the corticospinal excitability of M1. This effect may be associated with a decrease in the activity of inhibitory intracortical mechanisms. Trial registration number: U1111-1173-1946 (Registro Brasileiro de Ensaios Clínicos; http://www.ensaiosclinicos.gov.br/ )


2021 ◽  
Vol 15 ◽  
Author(s):  
Islam Halawa ◽  
Katharina Reichert ◽  
Aman S. Aberra ◽  
Martin Sommer ◽  
Angel V. Peterchev ◽  
...  

Introduction: High frequency repetitive transcranial magnetic stimulation applied to the motor cortex causes an increase in the amplitude of motor evoked potentials (MEPs) that persists after stimulation. Here, we focus on the aftereffects generated by high frequency controllable pulse TMS (cTMS) with different directions, intensities, and pulse durations.Objectives: To investigate the influence of pulse duration, direction, and amplitude in correlation to induced depolarization on the excitatory plastic aftereffects of 5 Hz repetitive transcranial magnetic stimulation (rTMS) using bidirectional cTMS pulses.Methods: We stimulated the hand motor cortex with 5 Hz rTMS applying 1,200 bidirectional pulses with the main component durations of 80, 100, and 120 μs using a controllable pulse stimulator TMS (cTMS). Fourteen healthy subjects were investigated in nine sessions with 80% resting motor threshold (RMT) for posterior-anterior (PA) and 80 and 90% RMT anterior-posterior (AP) induced current direction. We used a model approximating neuronal membranes as a linear first order low-pass filter to estimate the strength–duration time constant and to simulate the membrane polarization produced by each waveform.Results: PA and AP 5 Hz rTMS at 80% RMT produced no significant excitation. An exploratory analysis indicated that 90% RMT AP stimulation with 100 and 120 μs pulses but not 80 μs pulses led to significant excitation. We found a positive correlation between the plastic outcome of each session and the simulated peak neural membrane depolarization for time constants &gt;100 μs. This correlation was strongest for neural elements that are depolarized by the main phase of the AP pulse, suggesting the effects were dependent on pulse direction.Conclusions: Among the tested conditions, only 5 Hz rTMS with higher intensity and wider pulses appeared to produce excitatory aftereffects. This correlated with the greater depolarization of neural elements with time constants slower than the directly activated neural elements responsible for producing the motor output (e.g., somatic or dendritic membrane).Significance: Higher intensities and wider pulses seem to be more efficient in inducing excitation. If confirmed, this observation could lead to better results in future clinical studies performed with wider pulses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Natalie Mrachacz-Kersting ◽  
Andrew James Thomas Stevenson ◽  
Ulf Ziemann

AbstractTranscranial magnetic stimulation (TMS) can be used to study excitability of corticospinal neurons in human motor cortex. It is currently not fully elucidated if corticospinal neurons in the hand vs. leg representation show the same or different regulation of their excitability by GABAAergic and glutamatergic interneuronal circuitry. Using a paired-pulse TMS protocol we tested short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF) in 18 healthy participants. Motor evoked potentials were evoked in one hand (abductor digiti minimi) and one leg muscle (tibialis anterior), with systematic variation of the intensities of the first (S1) and second (S2) pulse between 60 and 140% resting motor threshold (RMT) in 10% steps, at two interstimulus intervals of 1.5 and 2.1 ms. For the hand and leg motor representations and for both interstimulus intervals, SICI occurred if the intensities of S1 < RMT and S2 > RMT, while SICF predominated if S1 = S2 ≤ RMT, or S1 > RMT and S2 < RMT. Findings confirm and extend previous evidence that the regulation of excitability of corticospinal neurons of the hand versus leg representation in human primary cortex through GABAAergic and glutamatergic interneuronal circuits is highly similar, and that corticospinal neurons of both representations are activated by TMS transsynaptically in largely identical ways.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257554
Author(s):  
Sergei Tugin ◽  
Victor H. Souza ◽  
Maria A. Nazarova ◽  
Pavel A. Novikov ◽  
Aino E. Tervo ◽  
...  

Besides stimulus intensities and interstimulus intervals (ISI), the electric field (E-field) orientation is known to affect both short-interval intracortical inhibition (SICI) and facilitation (SICF) in paired-pulse transcranial magnetic stimulation (TMS). However, it has yet to be established how distinct orientations of the conditioning (CS) and test stimuli (TS) affect the SICI and SICF generation. With the use of a multi-channel TMS transducer that provides electronic control of the stimulus orientation and intensity, we aimed to investigate how changes in the CS and TS orientation affect the strength of SICI and SICF. We hypothesized that the CS orientation would play a major role for SICF than for SICI, whereas the CS intensity would be more critical for SICI than for SICF. In eight healthy subjects, we tested two ISIs (1.5 and 2.7 ms), two CS and TS orientations (anteromedial (AM) and posteromedial (PM)), and four CS intensities (50, 70, 90, and 110% of the resting motor threshold (RMT)). The TS intensity was fixed at 110% RMT. The intensities were adjusted to the corresponding RMT in the AM and PM orientations. SICI and SICF were observed in all tested CS and TS orientations. SICI depended on the CS intensity in a U-shaped manner in any combination of the CS and TS orientations. With 70% and 90% RMT CS intensities, stronger PM-oriented CS induced stronger inhibition than weaker AM-oriented CS. Similar SICF was observed for any CS orientation. Neither SICI nor SICF depended on the TS orientation. We demonstrated that SICI and SICF could be elicited by the CS perpendicular to the TS, which indicates that these stimuli affected either overlapping or strongly connected neuronal populations. We concluded that SICI is primarily sensitive to the CS intensity and that CS intensity adjustment resulted in similar SICF for different CS orientations.


2021 ◽  
Vol 51 (3) ◽  
pp. E7
Author(s):  
Gueliz Acker ◽  
Davide Giampiccolo ◽  
Kerstin Rubarth ◽  
Robert Mertens ◽  
Anna Zdunczyk ◽  
...  

OBJECTIVE Motor cortical dysfunction has been shown to be reversible in patients with unilateral atherosclerotic disease after cerebral revascularization. Moyamoya vasculopathy (MMV) is a rare bilateral stenoocclusive cerebrovascular disease. The aim of this study was to analyze the corticospinal excitability and the role of bypass surgery in restoring cortical motor function in patients by using navigated transcranial magnetic stimulation (nTMS). METHODS Patients with bilateral MMV who met the criteria for cerebral revascularization were prospectively included. Corticospinal excitability, cortical representation area, and intracortical inhibition and facilitation were assessed by nTMS for a small hand muscle (first dorsal interosseous) before and after revascularization. The clinically and/or hemodynamically more severely affected hemisphere was operated first as the leading hemisphere. Intra- and interhemispheric differences were analyzed before and after direct or combined revascularization. RESULTS A total of 30 patients with bilateral MMV were examined by nTMS prior to and after revascularization surgery. The corticospinal excitability was higher in the leading hemisphere compared with the non-leading hemisphere prior to revascularization. This hyperexcitability was normalized after revascularization as demonstrated in the resting motor threshold ratio of the hemispheres (preoperative median 0.97 [IQR 0.89–1.08], postoperative median 1.02 [IQR 0.94–1.22]; relative effect = 0.61, p = 0.03). In paired-pulse paradigms, a tendency for a weaker inhibition of the leading hemisphere was observed compared with the non-leading hemisphere. Importantly, the paired paradigm also demonstrated approximation of excitability patterns between the two hemispheres after surgery. CONCLUSIONS The study results suggested that, in the case of a bilateral chronic ischemia, a compensation mechanism between both hemispheres seemed to exist that normalized after revascularization surgery. A potential role of nTMS in predicting the efficacy of revascularization must be further assessed.


Sign in / Sign up

Export Citation Format

Share Document