scholarly journals I10 PGS/PGD evaluation of 7059 embryos from 872 in vitro fertilization (IVF) cycles using 23-chromosome single nucleotide polymorphism (SNP) or 23-chromosome comparative genomic hybridization (aCGH) microarrays

2013 ◽  
Vol 26 ◽  
pp. S4 ◽  
Author(s):  
W.G. Kearns
2017 ◽  
Vol 70 (9-10) ◽  
pp. 325-331
Author(s):  
Jelena Vukosavljevic ◽  
Aleksandra Trninic-Pjevic ◽  
Artur Bjelica ◽  
Ivana Jagodic ◽  
Vesna Kopitovic ◽  
...  

Introduction. Numerical aberrations (whole chromosomal aneuploidy) have been considered one of the most important factors leading to implantation failure and early miscarriages in patients undergoing assisted reproductive procedures. Embryo selection is mainly based on morphological assessment; however, embryos produced from aneuploid gametes cannot be distinguished from euploid based on morphological characteristics. Detection of aneuploidy in human embryos. Thanks to the introduction of molecular-genetic screening of embryos, it is possible to identify aneuploid embryos via preimplantation genetic screening/diagnosis and thus select the best embryos based on their ploidy. Array comparative genomic hybridization is a molecular technique which allows ploidy analysis of the entire genome amplification from a single cell, within 24 hours after polar body, blastomere or trophectoderm cell biopsy. Trophectoderm cell biopsy is considered the most reliable screening approach given the lower mosaicism appearance at the blastocyst stage. Conclusion. This paper points to the importance and necessity of molecular analysis in embryo selection. Further investigations and improvements are required, because this technology has only recently become available in clinical practice in the in vitro fertilization procedure.


2014 ◽  
Vol 60 (12) ◽  
pp. 1558-1568 ◽  
Author(s):  
Luise Hartmann ◽  
Christine F Stephenson ◽  
Stephanie R Verkamp ◽  
Krystal R Johnson ◽  
Bettina Burnworth ◽  
...  

Abstract BACKGROUND Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. METHODS This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. RESULTS Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. CONCLUSIONS Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document