clonal evolution
Recently Published Documents


TOTAL DOCUMENTS

1754
(FIVE YEARS 562)

H-INDEX

80
(FIVE YEARS 13)

Author(s):  
Nabih Maslah ◽  
Emmanuelle Verger ◽  
Stéphane Giraudier ◽  
Mathias Chea ◽  
Ronald Hoffman ◽  
...  

The mechanisms of transformation of chronic myeloproliferative neoplasms (MPN) to leukemia are largely unknown but TP53mutations acquisition is considered a key event in this process. P53 is a main tumor suppressor but mutations in this protein per se do not confer a proliferative advantage to the cells and a selection process is needed for the expansion of mutant clones. MDM2 inhibitors may rescue normal p53 from degradation and have been evaluated in a variety of cancers with promising results. However the impact of these drugs on TP53 mutated cells is underexplored. We report herein evidence of a direct effect of MDM2 inhibition on the selection of MPN patients' cells harboring TP53 mutations. To decipher whether these mutations can arise in a specific molecular context we used a DNA single cell approach to determine the clonal architecture of TP53 mutated cells. We observed that TP53 mutations are late events in MPN mainly occurring in the driver clone while clonal evolution frequently consists of sequential branching instead of linear consecutive acquisition of mutations in the same clone. At the single cell level the presence of additional mutations does not influence the selection of TP53 mutant cells by MDM2 inhibitor treatment. Also, we describe an in vitro test allowing to predict the emergence of TP53 mutated clones. Altogether, this is the first demonstration that a drug treatment can directly favor the emergence of TP53-mutated subclones in MPN.


Author(s):  
Anna Vidal ◽  
Torben Redmer

Clonal evolution and cellular plasticity are the genetic and non-genetic driving forces of tumor heterogeneity that in turn determines the tumor cell response towards therapeutic drugs. Several lines of evidence suggest that therapeutic interventions foster the selection of drug resistant neural crest stem-like cells (NCSCs) that establish minimal residual disease (MRD) in melanoma. Here we established a dual reporter system enabling the tracking of NGFR expression and mRNA stability, providing insights into the maintenance of NCSC-states. We observed that the transcriptional reporter that contained a 1kb fragment of the human NGFR promoter was activated only in a minor subset (0.72±0.49%, range 0.3-1.5) and ~2-4% of A375 melanoma cells revealed stable NGFR mRNA. The combination of both reporters provided insights into phenotype switching and revealed that both cellular subsets gave rise to cellular heterogeneity. Moreover, whole transcriptome profiling and gene set enrichment analysis (GSEA) of the minor cellular subset revealed hypoxia-associated programs that might serve as potential drivers of an in vitro switching of NGFR-associated phenotypes and relapse of post-BRAF inhibitor treated tumors. Concordantly, we observed that the minor cellular subset increased in response to dabrafenib over time. In summary, our reporter-based approach provided insights into plasticity and identified a cellular subset that might be responsible for the establishment of MRD in melanoma.


Author(s):  
F. Tiso ◽  
T. N. Koorenhof-Scheele ◽  
E. Huys ◽  
J. H. A. Martens ◽  
A. O. de Graaf ◽  
...  

AbstractAcute myeloid leukemia (AML) is a highly heterogeneous disease showing dynamic clonal evolution patterns over time. Various subclones may be present simultaneously and subclones may show a different expansion pattern and respond differently to applied therapies. It is already clear that immunophenotyping and genetic analyses may yield overlapping, but also complementary information. Detailed information on the genetic make-up of immunophenotypically defined subclones is however scarce. We performed error-corrected sequencing for 27 myeloid leukemia driver genes in 86, FACS-sorted immunophenotypically characterized normal and aberrant subfractions in 10 AML patients. We identified three main scenarios. In the first group of patients, the two techniques were equally well characterizing the malignancy. In the second group, most of the isolated populations did not express aberrant immunophenotypes but still harbored several genetic aberrancies, indicating that the information obtained only by immunophenotyping would be incomplete. Vice versa, one patient was identified in which genetic mutations were found only in a small fraction of the immunophenotypically defined malignant populations, indicating that the genetic analysis gave an incomplete picture of the disease. We conclude that currently, characterization of leukemic cells in AML by molecular and immunophenotypic techniques is complementary, and infer that both techniques should be used in parallel in order to obtain the most complete view on the disease.


Author(s):  
Jiadai Xu ◽  
Yue Wang ◽  
Zheng Wei ◽  
Jingli Zhuang ◽  
Jing Li ◽  
...  

This study attempted to investigate how clonal structure evolves, along with potential regulatory networks, as a result of multiline therapies in relapsed/refractory multiple myeloma (RRMM). Eight whole exome sequencing (WES) and one single cell RNA sequencing (scRNA-seq) were performed in order to assess dynamic genomic changes in temporal consecutive samples of one RRMM patient from the time of diagnosis to death (about 37 months). The 63-year-old female patient who suffered from MM (P1) had disease progression (PD) nine times from July 2017 [newly diagnosed (ND)] to Aug 2020 (death), and the force to drive branching-pattern evolution of malignant PCs was found to be sustained. The mutant-allele tumor heterogeneity (MATH) and tumor mutation burden (TMB) initially exhibited a downward trend, which was then upward throughout the course of the disease. Various somatic single nucleotide variants (SNVs) that had disappeared after the previous treatment were observed to reappear in later stages. Chromosomal instability (CIN) and homologous recombination deficiency (HRD) scores were observed to be increased during periods of all progression, especially in the period of extramedullary plasmacytoma. Finally, in combination with WES and scRNA-seq of P1-PD9 (the nineth PD), the intro-heterogeneity and gene regulatory networks of MM cells were deciphered. As verified by the overall survival of MM patients in the MMRF CoMMpass and GSE24080 datasets, RUNX3 was identified as a potential driver for RRMM.


2022 ◽  
Author(s):  
Yanan Zhai ◽  
Prashant Singh ◽  
Anna Dolnik ◽  
Peter Brazda ◽  
Nader Atlasy ◽  
...  

The heterogeneity and evolution of AML blasts can render therapeutic interventions ineffective in a yet poorly understood patient-specific manner. To gain insight into the clonal heterogeneity of diagnosis (Dx) and relapse (Re) pairs, we employed whole-exome sequencing and single-cell RNA-seq to longitudinally profile two t(8;21) (AML1-ETO = RUNX1-RUNX1T1), and four FLT3-ITD AML cases. The single cell RNA data underpinned the tumor heterogeneity amongst patient blasts. The Dx-Re transcriptomes of high risk FLT3-ITD pairs formed a continuum from extensively changed in the absence of significantly mutational changes in AML-associated genes to rather similar Dx-Re pair of an intermediate risk FLT3-ITD. In one high risk FLT3-ITD pair, a pathway switched from an AP-1 regulated network in Dx to mTOR signaling in Re. The distinct AML1-ETO pairs comprise clusters that share genes related to hematopoietic stem cell maintenance and cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells probably evolved from the Dx LSC-like cells. In summary, our study revealed a continuum from drastic transcriptional changes to extensive similarities between respective Dx-Re pairs that are poorly explained by the well-established model of clonal evolution. Our results suggest alternative and currently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence.


Author(s):  
Benedicte Bang ◽  
Jesper Eisfeldt ◽  
Gisela Barbany ◽  
Arja Harila-Saari ◽  
Mats Heyman ◽  
...  

Genetic analysis of leukemic clones in monozygotic twins with concordant ALL has proved a unique opportunity to gain insight into the molecular phylogenetics of leukemogenesis. Using whole genome sequencing, we characterized constitutional and somatic SNVs/indels and structural variants in a monozygotic twin pair with concordant ETV6-RUNX1 positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In addition, digital PCR (dPCR) was applied to evaluate the presence of and quantify selected somatic variants at birth, diagnosis and remission. A shared somatic complex rearrangement involving chromosomes 11, 12 and 21 with identical fusion sequences in leukemias of both twins offered direct proof of a common clonal origin. The ETV6-RUNX1 fusion detected at diagnosis was found to originate from this complex rearrangement. A shared somatic frameshift deletion in UBA2 was also identified in diagnostic samples. In addition, each leukemia independently acquired analogous deletions of three genes recurrently targeted in BCP-ALLs (ETV6, ATF7IP and RAG1/RAG2) providing evidence of a convergent clonal evolution, only explained by a strong concurrent selective pressure. Quantification of the UBA2 deletion by dPCR surprisingly indicated it persisted in remission. This, for the first time to our knowledge, provided evidence of a UBA2 variant preceding the well-established initiating event ETV6-RUNX1. Further, we suggest the UBA2 deletion exerted a leukemia predisposing effect and that its essential role in SUMOylation, regulating nearly all physiological and pathological cellular processes such as DNA-repair by non-homologous end joining, may hold a mechanistic explanation for the predisposition.


2022 ◽  
pp. 371-391
Author(s):  
René Rodríguez ◽  
Jiri Hatina ◽  
Stefano Gambera ◽  
Sofía T. Menéndez ◽  
Javier García-Castro

Sign in / Sign up

Export Citation Format

Share Document