A Global Optimization Algorithm for Solving Linear Programming Problem

1997 ◽  
Vol 30 (19) ◽  
pp. 513-515
Author(s):  
José Ranieri Ribeiro Cavalcante ◽  
Fernando Menezes Campello de Souza
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xue-Ping Hou ◽  
Pei-Ping Shen ◽  
Yong-Qiang Chen

This paper presents a global optimization algorithm for solving the signomial geometric programming (SGP) problem. In the algorithm, by the straight forward algebraic manipulation of terms and by utilizing a transformation of variables, the initial nonconvex programming problem (SGP) is first converted into an equivalent monotonic optimization problem and then is reduced to a sequence of linear programming problems, based on the linearizing technique. To improve the computational efficiency of the algorithm, two range reduction operations are combined in the branch and bound procedure. The proposed algorithm is convergent to the global minimum of the (SGP) by means of the subsequent solutions of a series of relaxation linear programming problems. And finally, the numerical results are reported to vindicate the feasibility and effectiveness of the proposed method.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 867 ◽  
Author(s):  
X. Liu ◽  
Y.L. Gao ◽  
B. Zhang ◽  
F.P. Tian

In this paper, we propose a new global optimization algorithm, which can better solve a class of linear fractional programming problems on a large scale. First, the original problem is equivalent to a nonlinear programming problem: It introduces p auxiliary variables. At the same time, p new nonlinear equality constraints are added to the original problem. By classifying the coefficient symbols of all linear functions in the objective function of the original problem, four sets are obtained, which are I i + , I i − , J i + and J i − . Combined with the multiplication rule of real number operation, the objective function and constraint conditions of the equivalent problem are linearized into a lower bound linear relaxation programming problem. Our lower bound determination method only needs e i T x + f i ≠ 0 , and there is no need to convert molecules to non-negative forms in advance for some special problems. A output-space branch and bound algorithm based on solving the linear programming problem is proposed and the convergence of the algorithm is proved. Finally, in order to illustrate the feasibility and effectiveness of the algorithm, we have done a series of numerical experiments, and show the advantages and disadvantages of our algorithm by the numerical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hongwei Jiao ◽  
Yongqiang Chen

We present a global optimization algorithm for solving generalized quadratic programming (GQP), that is, nonconvex quadratic programming with nonconvex quadratic constraints. By utilizing a new linearizing technique, the initial nonconvex programming problem (GQP) is reduced to a sequence of relaxation linear programming problems. To improve the computational efficiency of the algorithm, a range reduction technique is employed in the branch and bound procedure. The proposed algorithm is convergent to the global minimum of the (GQP) by means of the subsequent solutions of a series of relaxation linear programming problems. Finally, numerical results show the robustness and effectiveness of the proposed algorithm.


2013 ◽  
Vol 351-352 ◽  
pp. 1722-1725
Author(s):  
Ying Liao

On the basis of the theory of structure reliability, the optimization algorithm according to the geometric significance of the reliability index and the checking point method are studied to calculate the reliability of the bracing structure for foundation pit. Combined with a soil nailed wall engineering example, the primary data calculation table is established to solve the non-linear programming problem adopting the embedded planning solving method of Excel software and the results indicate that the reliability index and the coordinates of the checking point are same nearly using the checking point method and Excel planning solving method, but the latter is more efficient and convenient than the former, it means that it is feasible to calculate the reliability index of the bracing structure for foundation pit by Excel optimization algorithm.


Sign in / Sign up

Export Citation Format

Share Document