reliability index
Recently Published Documents


TOTAL DOCUMENTS

718
(FIVE YEARS 223)

H-INDEX

26
(FIVE YEARS 5)

Author(s):  
Junjie Wang ◽  
Yating Liu ◽  
Gongwei Zhao ◽  
Nanhai Ye ◽  
Lifei Yang
Keyword(s):  

2022 ◽  
Vol 12 (2) ◽  
pp. 624
Author(s):  
Ji-Hyeon Kim ◽  
Yeun-Chul Park ◽  
Mancheol Kim ◽  
Hyoung-Bo Sim

Tension clamps play an important role in maintaining the track gauge by fixing the rails to the sleepers. Damage to the tension clamps was observed on an urban railway. The cause of the fracturing of the tension clamps was identified and reliability analyses on the fatigue failure of the tension clamps were performed. The stress ranges were estimated by measuring the strain at the locations where most of the fractures occurred during train operation. Afterward, a statistical model of the stress ranges was developed using the measured data. The statistical parameters of the stress ranges for the reliability analysis were estimated based on the field measurement data. The reliability indexes were calculated for the inner and outer rails and for the inside and outside track gauges of each rail. The variations of the reliability index for the years in service and the number of cycles were investigated. The results of the reliability analyses showed a consistency with the field observations.


2022 ◽  
Author(s):  
Zhifeng Xu

This research proposes a set of novel algorithms for structural reliability estimation based on muti-dimensional binary search tree and breadth-first search, namely the reliability accuracy supervised searching algorithm, the limit-state surface resolution supervised searching algorithm and the reliability index precision supervised fast searching algorithm. The proposed algorithms have the following strengths: 1, all the proposed algorithms have satisfactory computational efficiency by reducing redundant samplings; 2, their computational costs are stable and computable; 3, performance functions of high non-linearity can be will handled; 4, the reliability accuracy supervised searching algorithm can adapt its computational cost according to a prescribed accuracy; 5, the limit-state surface resolution supervised searching algorithm is able to probe sharp changes on limit-state surfaces; 6, the reliability index precision supervised fast searching algorithm computes the reliability index with sufficient precision in a fast way.


In Vivo ◽  
2021 ◽  
Vol 36 (1) ◽  
pp. 264-273
Author(s):  
TOMOO JIKUZONO ◽  
OSAMU ISHIBASHI ◽  
SHOKO KURE ◽  
CHIAKI ITOH ◽  
TETSU YAMADA ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Pengfei Liu ◽  
Daimeng Shang ◽  
Qiang Liu ◽  
Zhihong Yi ◽  
Kai Wei

Offshore steel trestles (OSTs) are exposed to severe marine environments with stochastic wave and current loads, making structural safety assessment challenging and difficult. Reliability analysis is a suitable way to consider both wave and current loading intensity uncertainties, but the implicit and complex limit state functions of the reliability analysis usually imply huge computational costs. This paper proposes an efficient reliability analysis framework for OST using the kriging model of optimal linear unbiased estimation. The surrogate model is built with stochastic waves, current parameters, and the corresponding load factors. The framework is then used to evaluate the reliability of an example OST subjected to wave and current loads at three limit states of OST, including first yield (FY), full plastic (FP), and collapse initiation (CI). Three different distributions are used for comparison of the results of failure probability and reliability index. The results and the computational cost by the proposed framework are compared with that from the Monte Carlo sampling (MCS) and Latin hypercube sampling (LHS) method. The influences of sample number on the prediction accuracy and reliability index are investigated. The influence of marine growth on the reliability analysis of the OST is discussed using MCS and the kriging model. The results show that the reliability analysis based on the kriging model can obtain the reliability index for the OST efficiently with less calculation time but similar results compared with MCS and LHS. With the increase of the number of samples, the prediction accuracy of the kriging model increases, and the corresponding failure probability fluctuates greatly at first and then tends to be stable. The reliability of the example OST is reduced with the increase of marine growth, regardless of the limit state.


2021 ◽  
Vol 12 (1) ◽  
pp. 206
Author(s):  
Daniel Herrera ◽  
Gerardo Varela ◽  
Dante Tolentino

An approach to estimate both the reliability index β and its complement, the probability of failure, through closed-form expressions that consider aleatory and epistemic uncertainties, is proposed. Alternatively, exceedance demand rates are obtained based on simplified expressions and numerical integration. Reliability indicators are calculated, considering the uncertainties in the compressive strength of concrete, steel yield, and section geometry, together with the aleatory uncertainties related to seismic loadings. Such indicators are estimated in a continuous RC bridge located in Acapulco, Guerrero, Mexico. The bridge was designed to comply with a drift of 0.004. Exceedance demand rates for drift thresholds from 0.001 to 0.012 are estimated, and maximum differences of 5.5% are found between the closed-form expression and numerical integration. The exceedance demand rate expressed by means of its inverse, the return period, indicates that the serviceability limit state is exceeded after 58 years of the bridge construction. The reliability index decreases by about 1.66%, and the probability of failure increases by about 16.1% when the epistemic uncertainties are considered. The approach shows the importance of epistemic uncertainties in the estimation of reliability indicators.


2021 ◽  
Author(s):  
Huazhen Cao ◽  
Chong Gao ◽  
Yaxiong Wu ◽  
Hao Li ◽  
Zijun Wang ◽  
...  

This paper presents an estimation method of distribution network reliability planning Investment Based on sequence linearization correlation analysis. Firstly, the planning business index closely related to reliability are selected, and the control objectives of reliability index are decomposed into the promotion objectives of each planning business index through sequence linearization correlation analysis. Then, the typical engineering construction scenarios corresponding to each planning business index are constructed, and the investment required to achieve the corresponding promotion objectives of business index is estimated according to the typical scenarios, Finally, the total investment of reliability planning is obtained. The example shows that the method can be applied to the actual distribution network with complex grid conditions and various planning schemes, and can provide powerful guidance for power supply enterprises to improve the efficiency of capital use


2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Xiaoya Bian ◽  
Jiawei Chen ◽  
Xixuan Bai ◽  
Kunpeng Zheng

Driven-pile setup is referred to a phenomenon in which the bearing capacity of driven piles increases with time after the end of driving (EOD). The setup effect can significantly improve the bearing capacity (ultimate resistance) of driven piles after initial installation, especially the ultimate shaft resistance. Based on the reliability theory and considering the setup effects of driven piles, this article presents an increase factor (Msetup) for the ultimate resistance of driven piles to modify the reliability index calculation formula. At the same time, the correlation between R0 and Rsetup is comprehensively considered in the reliability index calculation. Next, the uncertainty analysis of load and resistance is conducted to determine the ranges of relevant parameters. Meanwhile, the influence of four critical parameters (factor of safety FOS, the ratio of dead load to live load ρ = QD/QL, Msetup, the correlation coefficient between R0 and Rsetup, and ρR0,Rsetup) on reliability index are analyzed. This parametric study indicates that ρ has a slight influence on the reliability index. However, the reliability index is significantly influenced by FOS, Msetup, and ρR0,Rsetup. Finally, by comparisons with the existing results, it is concluded that the formula proposed in this study is reasonable, and more uncertainties are considered to make the calculated reliability index closer to a practical engineering application. The presented formula clearly expresses the incorporation of the pile setup effect into reliability index calculation, and it is conducive to improving the prediction accuracy of the design capacity of driven piles. Therefore, the reliability analysis of driven piles considering setup effects will present a theoretical basis for the application of driven piles in engineering practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qiang Fu ◽  
Xiao Li ◽  
Zilong Meng ◽  
Yinuo Liu ◽  
Xueji Cai ◽  
...  

In this paper, the high-order moment method (HOMM) was developed for estimating pile foundation bearing capacity reliability assessment. Firstly, after the performance function was established, the first four moments (viz. mean, variance, skewness, and kurtosis) were suggested to be determined by a point estimate method based on two-dimensional reduction integrations. Then, the probability distribution of the performance function for the pile foundation bearing capacity was then approximated by a four-parameter cubic normal distribution, in which its distribution parameters are the first four moments. Meanwhile, the quantile of the probability distribution for the performance function and its reliability index was capable to be obtained through this distribution. In order to examine the efficiency of this method in engineering application, four pile foundations with different length-diameter radios were investigated in detail. The results demonstrate that the reliability analysis based on HOMM is greatly improved to the computational efficiency without loss precision compared with Monte Carlo simulation (MCS) and does not require complex partial derivative solving, checking point sought, and large numbers of iteration comparing with first-order reliability method (FORM). Moreover, the probability distribution function (PDF) approximated by the four-parameter cubic normal distribution was found to be consistent with that obtained by MCS. Eventually, the effects of parameter sensitivity for relative soil layer of the certain pile on reliability index were illustrated using the above-mentioned method. It indicated that the HOMM is an effective and simple approach for reliability assessment of the pile foundation bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document