Robust Fault Detection Method for Uncertain Multivariable Systems

1997 ◽  
Vol 30 (18) ◽  
pp. 91-96 ◽  
Author(s):  
Oh-Kyu Kwon ◽  
Dae-Woo Kim ◽  
Il-Sun Hong
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Haitao Wang

An online robust fault detection method is presented in this paper for VAV air handling unit and its implementation. Residual-based EWMA control chart is used to monitor the control processes of air handling unit and detect faults of air handling unit. In order to provide a level of robustness with respect to modeling errors, control limits are determined by incorporating time series model uncertainty in EWMA control chart. The fault detection method proposed was tested and validated using real time data collected from real VAV air-conditioning systems involving multiple artificial faults. The results of validation show residual-based EWMA control chart with designing control limits can improve the accuracy of fault detection through eliminating the negative effects of dynamic characteristics, serial correlation, normal transient changes of system, and time series modeling errors. The robust fault detection method proposed can provide an effective tool for detecting the faults of air handling units.


Author(s):  
Jinglu Hu ◽  
◽  
Kotaro Hirasawa ◽  
Kousuke Kumamaru ◽  

This paper proposes a neurofuzzy approach to fault detection in linear systems. The system diagnosed is described by using a neurofuzzy model called LimNet that consists of a linear model and multiple local linear models with interpolation of a "fuzzy basis function". Fault detection is considered in two cases: when faults occur in the linear model part, a KDI-based robust fault detection is applied, where a multi-local-model part is treated as error due to nonlinear undermodeling; when faults occur in the multi-local-model part, a multi-model based fault detection method is developed, in which the identified LimNet is interpreted as several local ARMAX models, and KDI is used as an index to discriminate between each local model and its reference. This paper mainly concentrates discussions on multi-model based fault detection.


2018 ◽  
Vol 51 (24) ◽  
pp. 500-507 ◽  
Author(s):  
Stefan Schwab ◽  
Vicenç Puig ◽  
Soeren Hohmann

Author(s):  
Weihai Sun ◽  
Lemei Han

Machine fault detection has great practical significance. Compared with the detection method that requires external sensors, the detection of machine fault by sound signal does not need to destroy its structure. The current popular audio-based fault detection often needs a lot of learning data and complex learning process, and needs the support of known fault database. The fault detection method based on audio proposed in this paper only needs to ensure that the machine works normally in the first second. Through the correlation coefficient calculation, energy analysis, EMD and other methods to carry out time-frequency analysis of the subsequent collected sound signals, we can detect whether the machine has fault.


Sign in / Sign up

Export Citation Format

Share Document