Boolean functions, vectorial functions, and cryptography

2011 ◽  
Vol 22 (06) ◽  
pp. 1259-1269 ◽  
Author(s):  
CLAUDE CARLET

The nonlinearity profile of Boolean functions is a generalization of the most important cryptographic criterion, called the (first order) nonlinearity. It is defined as the sequence of the minimum Hamming distances nlr(f) between a given Boolean function f and all Boolean functions in the same number of variables and of degrees at most r, for r ≥ 1. This parameter, which has a close relationship with the Gowers norm, quantifies the resistance to cryptanalyses by low degree approximations of stream ciphers using the Boolean function f as combiner or as filter. The nonlinearity profile can also be defined for vectorial functions: it is the sequence of the minimum Hamming distances between the component functions of the vectorial function and all Boolean functions of degrees at most r, for r ≥ 1. The nonlinearity profile of the multiplicative inverse functions has been lower bounded in a previous paper by the same author. No other example of an infinite class of functions with unbounded nonlinearity profile has been exhibited since then. In this paper, we lower bound the whole nonlinearity profile of the (simplest) Dillon bent function (x,y) ↦ xy2n/2-2, x, y ∈ 𝔽2n/2 and we exhibit another class of functions, for which bounding the whole profile of each of them comes down to bounding the first order nonlinearities of all functions.


2019 ◽  
Vol 6 (2) ◽  
pp. 90-94
Author(s):  
Hernandez Piloto Daniel Humberto

In this work a class of functions is studied, which are built with the help of significant bits sequences on the ring ℤ2n. This class is built with use of a function ψ: ℤ2n → ℤ2. In public literature there are works in which ψ is a linear function. Here we will use a non-linear ψ function for this set. It is known that the period of a polynomial F in the ring ℤ2n is equal to T(mod 2)2α, where α∈ , n01- . The polynomials for which it is true that T(F) = T(F mod 2), in other words α = 0, are called marked polynomials. For our class we are going to use a polynomial with a maximum period as the characteristic polyomial. In the present work we show the bounds of the given class: non-linearity, the weight of the functions, the Hamming distance between functions. The Hamming distance between these functions and functions of other known classes is also given.


Author(s):  
Yu ZHOU ◽  
Wei ZHAO ◽  
Zhixiong CHEN ◽  
Weiqiong WANG ◽  
Xiaoni DU

Sign in / Sign up

Export Citation Format

Share Document