Intersection Theory for Punctured Holomorphic Curves

Author(s):  
Agustin Moreno

Abstract I construct infinitely many nondiffeomorphic examples of $5$ -dimensional contact manifolds which are tight, admit no strong fillings and do not have Giroux torsion. I obtain obstruction results for symplectic cobordisms, for which I give a proof not relying on the polyfold abstract perturbation scheme for Symplectic Field Theory (SFT). These results are part of my PhD thesis [23], and are the first applications of higher-dimensional Siefring intersection theory for holomorphic curves and hypersurfaces, as outlined in [23, 24], as a prequel to [30].


2007 ◽  
Vol 11 (2) ◽  
pp. 939-977 ◽  
Author(s):  
John R Klein ◽  
E Bruce Williams
Keyword(s):  

2020 ◽  
Vol 7 (1) ◽  
pp. 129-140
Author(s):  
Robert Ream

AbstractIn this paper we study an analog of minimal surfaces called Weyl-minimal surfaces in conformal manifolds with a Weyl connection (M4, c, D). We show that there is an Eells-Salamon type correspondence between nonvertical 𝒥-holomorphic curves in the weightless twistor space and branched Weyl-minimal surfaces. When (M, c, J) is conformally almost-Hermitian, there is a canonical Weyl connection. We show that for the canonical Weyl connection, branched Weyl-minimal surfaces satisfy the adjunction inequality\chi \left( {{T_f}\sum } \right) + \chi \left( {{N_f}\sum } \right) \le \pm {c_1}\left( {f*{T^{\left( {1,0} \right)}}M} \right).The ±J-holomorphic curves are automatically Weyl-minimal and satisfy the corresponding equality. These results generalize results of Eells-Salamon and Webster for minimal surfaces in Kähler 4-manifolds as well as their extension to almost-Kähler 4-manifolds by Chen-Tian, Ville, and Ma.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nikhil Kalyanapuram

Abstract We combine the technology of the theory of polytopes and twisted intersection theory to derive a large class of double copy relations that generalize the classical relations due to Kawai, Lewellen and Tye (KLT). To do this, we first study a generalization of the scattering equations of Cachazo, He and Yuan. While the scattering equations were defined on ℳ0, n — the moduli space of marked Riemann spheres — the new scattering equations are defined on polytopes known as accordiohedra, realized as hyperplane arrangements. These polytopes encode as patterns of intersection the scattering amplitudes of generic scalar theories. The twisted period relations of such intersection numbers provide a vast generalization of the KLT relations. Differential forms dual to the bounded chambers of the hyperplane arrangements furnish a natural generalization of the Bern-Carrasco-Johansson (BCJ) basis, the number of which can be determined by counting the number of solutions of the generalized scattering equations. In this work the focus is on a generalization of the BCJ expansion to generic scalar theories, although we use the labels KLT and BCJ interchangeably.


Author(s):  
Dawei Chen ◽  
Martin Möller ◽  
Adrien Sauvaget ◽  
Don Zagier

A Correction to this paper has been published: https://doi.org/10.1007/s00222-020-00969-4


Sign in / Sign up

Export Citation Format

Share Document