scholarly journals Central limit theorems for coupled particle filters

2020 ◽  
Vol 52 (3) ◽  
pp. 942-1001
Author(s):  
Ajay Jasra ◽  
Fangyuan Yu

AbstractIn this article we prove new central limit theorems (CLTs) for several coupled particle filters (CPFs). CPFs are used for the sequential estimation of the difference of expectations with respect to filters which are in some sense close. Examples include the estimation of the filtering distribution associated to different parameters (finite difference estimation) and filters associated to partially observed discretized diffusion processes (PODDP) and the implementation of the multilevel Monte Carlo (MLMC) identity. We develop new theory for CPFs, and based upon several results, we propose a new CPF which approximates the maximal coupling (MCPF) of a pair of predictor distributions. In the context of ML estimation associated to PODDP with time-discretization $\Delta_l=2^{-l}$ , $l\in\{0,1,\dots\}$ , we show that the MCPF and the approach of Jasra, Ballesio, et al. (2018) have, under certain assumptions, an asymptotic variance that is bounded above by an expression that is of (almost) the order of $\Delta_l$ ( $\mathcal{O}(\Delta_l)$ ), uniformly in time. The $\mathcal{O}(\Delta_l)$ bound preserves the so-called forward rate of the diffusion in some scenarios, which is not the case for the CPF in Jasra et al. (2017).

2021 ◽  
Vol 382 (1) ◽  
pp. 1-47
Author(s):  
Henk Bruin ◽  
Dalia Terhesiu ◽  
Mike Todd

AbstractWe obtain limit theorems (Stable Laws and Central Limit Theorems, both standard and non-standard) and thermodynamic properties for a class of non-uniformly hyperbolic flows: almost Anosov flows, constructed here. The link between the pressure function and limit theorems is studied in an abstract functional analytic framework, which may be applicable to other classes of non-uniformly hyperbolic flows.


2015 ◽  
Vol 125 (2) ◽  
pp. 428-457 ◽  
Author(s):  
Yan-Xia Ren ◽  
Renming Song ◽  
Rui Zhang

2009 ◽  
Vol 23 (1) ◽  
pp. 39-64 ◽  
Author(s):  
Ivan Nourdin ◽  
David Nualart

1992 ◽  
Vol 24 (2) ◽  
pp. 267-287 ◽  
Author(s):  
Allen L. Roginsky

Three different definitions of the renewal processes are considered. For each of them, a central limit theorem with a remainder term is proved. The random variables that form the renewal processes are independent but not necessarily identically distributed and do not have to be positive. The results obtained in this paper improve and extend the central limit theorems obtained by Ahmad (1981) and Niculescu and Omey (1985).


Sign in / Sign up

Export Citation Format

Share Document