On component failure in coherent systems with applications to maintenance strategies

2020 ◽  
Vol 52 (4) ◽  
pp. 1197-1223
Author(s):  
M. Hashemi ◽  
M. Asadi

AbstractProviding optimal strategies for maintaining technical systems in good working condition is an important goal in reliability engineering. The main aim of this paper is to propose some optimal maintenance policies for coherent systems based on some partial information about the status of components in the system. For this purpose, in the first part of the paper, we propose two criteria under which we compute the probability of the number of failed components in a coherent system with independent and identically distributed components. The first proposed criterion utilizes partial information about the status of the components with a single inspection of the system, and the second one uses partial information about the status of component failure under double monitoring of the system. In the computation of both criteria, we use the notion of the signature vector associated with the system. Some stochastic comparisons between two coherent systems have been made based on the proposed concepts. Then, by imposing some cost functions, we introduce new approaches to the optimal corrective and preventive maintenance of coherent systems. To illustrate the results, some examples are examined numerically and graphically.

2013 ◽  
Vol 45 (4) ◽  
pp. 1011-1027 ◽  
Author(s):  
Jorge Navarro ◽  
Francisco J. Samaniego ◽  
N. Balakrishnan

The signature of a system is defined as the vector whose ith element is the probability that the system fails concurrently with the ith component failure. The signature vector is known to be a distribution-free measure and a representation of the system's survival function has been developed in terms of the system's signature. The present work is devoted to the study of the joint distribution of lifetimes of pairs of systems with shared components. Here, a new distribution-free measure, the ‘joint bivariate signature’, of a pair of systems with shared components is defined, and a new representation theorem for the joint survival function of the system lifetimes is established. The theorem is shown to facilitate the study of the dependence between systems and the comparative performance of two pairs of such systems.


2016 ◽  
Vol 48 (2) ◽  
pp. 332-348 ◽  
Author(s):  
Bo H. Lindqvist ◽  
Francisco J. Samaniego ◽  
Arne B. Huseby

Abstract The signature of a coherent system is a useful tool in the study and comparison of lifetimes of engineered systems. In order to compare two systems of different sizes with respect to their signatures, the smaller system needs to be represented by an equivalent system of the same size as the larger system. In the paper we show how to construct equivalent systems by adding irrelevant components to the smaller system. This leads to simpler proofs of some current key results, and throws new light on the interpretation of mixed systems. We also present a sufficient condition for equivalence of systems of different sizes when restricting to coherent systems. In cases where for a given system there is no equivalent system of smaller size, we characterize the class of lower-sized systems with a signature vector which stochastically dominates the signature of the larger system. This setup is applied to an optimization problem in reliability economics.


2020 ◽  
Vol 52 (1) ◽  
pp. 348-376
Author(s):  
Nil Kamal Hazra ◽  
Neeraj Misra

AbstractRelative ageing describes how one system ages with respect to another. The ageing faster orders are used to compare the relative ageing of two systems. Here, we study ageing faster orders in the hazard and reversed hazard rates. We provide some sufficient conditions for one coherent system to dominate another with respect to ageing faster orders. Further, we investigate whether the active redundancy at the component level is more effective than that at the system level with respect to ageing faster orders, for a coherent system. Furthermore, a used coherent system and a coherent system made out of used components are compared with respect to ageing faster orders.


Author(s):  
Nil Kamal Hazra ◽  
Neeraj Misra

The relative aging is an important notion which is useful to measure how a system ages relative to another one. Among the existing stochastic orders, there are two important orders describing the relative aging of two systems, namely, aging faster orders in the cumulative hazard and the cumulative reversed hazard rate functions. In this paper, we give some sufficient conditions under which one coherent system ages faster than another one with respect to the aforementioned stochastic orders. Further, we show that the proposed sufficient conditions are satisfied for k-out-of-n systems. Moreover, some numerical examples are given to illustrate the applications of proposed results.


2010 ◽  
Vol 47 (03) ◽  
pp. 876-885 ◽  
Author(s):  
Zhengcheng Zhang

In this paper we obtain several mixture representations of the reliability function of the inactivity time of a coherent system under the condition that the system has failed at time t (> 0) in terms of the reliability functions of inactivity times of order statistics. Some ordering properties of the inactivity times of coherent systems with independent and identically distributed components are obtained, based on the stochastically ordered coefficient vectors between systems.


2014 ◽  
Vol 51 (4) ◽  
pp. 990-998 ◽  
Author(s):  
A. Parvardeh ◽  
N. Balakrishnan

In this paper we derive mixture representations for the reliability functions of the conditional residual life and inactivity time of a coherent system with n independent and identically distributed components. Based on these mixture representations we carry out stochastic comparisons on the conditional residual life, and the inactivity time of two coherent systems with independent and identical components.


2013 ◽  
Vol 45 (04) ◽  
pp. 1011-1027 ◽  
Author(s):  
Jorge Navarro ◽  
Francisco J. Samaniego ◽  
N. Balakrishnan

The signature of a system is defined as the vector whoseith element is the probability that the system fails concurrently with theith component failure. The signature vector is known to be a distribution-free measure and a representation of the system's survival function has been developed in terms of the system's signature. The present work is devoted to the study of the joint distribution of lifetimes of pairs of systems with shared components. Here, a new distribution-free measure, the ‘joint bivariate signature’, of a pair of systems with shared components is defined, and a new representation theorem for the joint survival function of the system lifetimes is established. The theorem is shown to facilitate the study of the dependence between systems and the comparative performance of two pairs of such systems.


2010 ◽  
Vol 47 (3) ◽  
pp. 876-885 ◽  
Author(s):  
Zhengcheng Zhang

In this paper we obtain several mixture representations of the reliability function of the inactivity time of a coherent system under the condition that the system has failed at time t (> 0) in terms of the reliability functions of inactivity times of order statistics. Some ordering properties of the inactivity times of coherent systems with independent and identically distributed components are obtained, based on the stochastically ordered coefficient vectors between systems.


2012 ◽  
Vol 49 (2) ◽  
pp. 385-404 ◽  
Author(s):  
S. Goliforushani ◽  
M. Asadi ◽  
N. Balakrishnan

In the study of the reliability of technical systems in reliability engineering, coherent systems play a key role. In this paper we consider a coherent system consisting of n components with independent and identically distributed components and propose two time-dependent criteria. The first criterion is a measure of the residual lifetime of live components of a coherent system having some of the components alive when the system fails at time t. The second criterion is a time-dependent measure which enables us to investigate the inactivity times of the failed components of a coherent system still functioning though some of its components have failed. Several ageing and stochastic properties of the proposed measures are then established.


2012 ◽  
Vol 49 (02) ◽  
pp. 385-404 ◽  
Author(s):  
S. Goliforushani ◽  
M. Asadi ◽  
N. Balakrishnan

In the study of the reliability of technical systems in reliability engineering, coherent systems play a key role. In this paper we consider a coherent system consisting of n components with independent and identically distributed components and propose two time-dependent criteria. The first criterion is a measure of the residual lifetime of live components of a coherent system having some of the components alive when the system fails at time t. The second criterion is a time-dependent measure which enables us to investigate the inactivity times of the failed components of a coherent system still functioning though some of its components have failed. Several ageing and stochastic properties of the proposed measures are then established.


Sign in / Sign up

Export Citation Format

Share Document