scholarly journals On the geodesic flow on CAT(0) spaces

2019 ◽  
Vol 40 (12) ◽  
pp. 3310-3338
Author(s):  
CHARALAMPOS CHARITOS ◽  
IOANNIS PAPADOPERAKIS ◽  
GEORGIOS TSAPOGAS

Under certain assumptions on CAT(0) spaces, we show that the geodesic flow is topologically mixing. In particular, the Bowen–Margulis’ measure finiteness assumption used by Ricks [Flat strips, Bowen–Margulis measures, and mixing of the geodesic flow for rank one CAT(0) spaces. Ergod. Th. & Dynam. Sys. 37 (2017), 939–970] is removed. We also construct examples of CAT(0) spaces that do not admit finite Bowen–Margulis measure.

2015 ◽  
Vol 37 (3) ◽  
pp. 939-970 ◽  
Author(s):  
RUSSELL RICKS

Let$X$be a proper, geodesically complete CAT($0$) space under a proper, non-elementary, isometric action by a group$\unicode[STIX]{x1D6E4}$with a rank one element. We construct a generalized Bowen–Margulis measure on the space of unit-speed parametrized geodesics of$X$modulo the$\unicode[STIX]{x1D6E4}$-action. Although the construction of Bowen–Margulis measures for rank one non-positively curved manifolds and for CAT($-1$) spaces is well known, the construction for CAT($0$) spaces hinges on establishing a new structural result of independent interest: almost no geodesic, under the Bowen–Margulis measure, bounds a flat strip of any positive width. We also show that almost every point in$\unicode[STIX]{x2202}_{\infty }X$, under the Patterson–Sullivan measure, is isolated in the Tits metric. (For these results we assume the Bowen–Margulis measure is finite, as it is in the cocompact case.) Finally, we precisely characterize mixing when$X$has full limit set: a finite Bowen–Margulis measure is not mixing under the geodesic flow precisely when$X$is a tree with all edge lengths in$c\mathbb{Z}$for some$c>0$. This characterization is new, even in the setting of CAT($-1$) spaces. More general (technical) versions of these results are also stated in the paper.


1997 ◽  
Vol 17 (6) ◽  
pp. 1359-1370
Author(s):  
CARLOS E. DURÁN

We show that the geodesic flow of a metric all of whose geodesics are closed is completely integrable, with tame integrals of motion. Applications to classical examples are given; in particular, it is shown that the geodesic flow of any quotient $M/\Gamma$ of a compact, rank one symmetric space $M$ by a finite group acting freely by isometries is completely integrable by tame integrals.


1997 ◽  
Vol 17 (1) ◽  
pp. 247-252
Author(s):  
CHENGBO YUE

Green [5] conjectured that if $M$ is a closed Riemannian manifold of negative sectional curvature such that the mean curvatures of the horospheres through each point depend only on the point, then $V$ is a locally symmetric space of rank one. He proved this in dimension two. In this paper we prove that under Green's assumption, $M$ must be asymptotically harmonic and that the geodesic flow on $M$ is $C^{\infty}$ conjugate to that of a locally symmetric space of rank one. Combining this with the recent rigidity theorem of Besson–Courtois–Gallot [1], it follows that Green's conjecture is true for all dimensions.


1999 ◽  
Vol 154 ◽  
pp. 171-183 ◽  
Author(s):  
Róbert Szőke

AbstractA compact Riemannian symmetric space admits a canonical complexification. This so called adapted complex manifold structure JA is defined on the tangent bundle. For compact rank-one symmetric spaces another complex structure JS is defined on the punctured tangent bundle. This latter is used to quantize the geodesic flow for such manifolds. We show that the limit of the push forward of JA under an appropriate family of diffeomorphisms exists and agrees with JS.


2003 ◽  
Vol 169 ◽  
pp. 191-217 ◽  
Author(s):  
Ihor V. Mykytyuk

AbstractFor rank-one symmetric spaces M of the compact type all Kähler structures Fλ, defined on their punctured tangent bundles T0 M and invariant with respect to the normalized geodesic flow on T0 M, are constructed. It is shown that this class {Fλ} of Kähler structures is stable under the reduction procedure.


2021 ◽  
pp. 1-32
Author(s):  
RUSSELL RICKS

Abstract Let X be a compact, geodesically complete, locally CAT(0) space such that the universal cover admits a rank-one axis. Assume X is not homothetic to a metric graph with integer edge lengths. Let $P_t$ be the number of parallel classes of oriented closed geodesics of length at most t; then $\lim \nolimits _{t \to \infty } P_t / ({e^{ht}}/{ht}) = 1$ , where h is the entropy of the geodesic flow on the space $GX$ of parametrized unit-speed geodesics in X.


1985 ◽  
Vol 5 (4) ◽  
pp. 587-593 ◽  
Author(s):  
Hans-Christoph Im Hof

AbstractWe introduce an Anosov action on the bundle of Weyl chambers of a riemannian symmetric space of non-compact type, which for rank one spaces coincides with the geodesic flow.


Author(s):  
Jean-Michel Bismut

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.


Sign in / Sign up

Export Citation Format

Share Document