scholarly journals Local limit theorems in relatively hyperbolic groups I: rough estimates

2021 ◽  
pp. 1-41
Author(s):  
MATTHIEU DUSSAULE

Abstract This is the first of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this first paper, we prove rough estimates for the Green function. Along the way, we introduce the notion of relative automaticity which will be useful in both papers and we show that relatively hyperbolic groups are relatively automatic. We also define the notion of spectral positive recurrence for random walks on relatively hyperbolic groups. We then use our estimates for the Green function to prove that $p_n\asymp R^{-n}n^{-3/2}$ for spectrally positive-recurrent random walks, where $p_n$ is the probability of going back to the origin at time n and where R is the inverse of the spectral radius of the random walk.

1985 ◽  
Vol 17 (1) ◽  
pp. 67-84 ◽  
Author(s):  
Wolfgang Woess

Nearest-neighbour random walks on the non-negative integers with transition probabilities p0,1 = 1, pk,k–1 = gk, pk,k+1 = 1– gk (0 < gk < 1, k = 1, 2, …) are studied by use of generating functions and continued fraction expansions. In particular, when (gk) is a periodic sequence, local limit theorems are proved and the harmonic functions are determined. These results are applied to simple random walks on certain trees.


1985 ◽  
Vol 17 (01) ◽  
pp. 67-84 ◽  
Author(s):  
Wolfgang Woess

Nearest-neighbour random walks on the non-negative integers with transition probabilitiesp0,1= 1,pk,k–1=gk,pk,k+1= 1–gk(0 &lt;gk&lt; 1,k= 1, 2, …) are studied by use of generating functions and continued fraction expansions. In particular, when (gk) is a periodic sequence, local limit theorems are proved and the harmonic functions are determined. These results are applied to simple random walks on certain trees.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


Sign in / Sign up

Export Citation Format

Share Document