the green function
Recently Published Documents


TOTAL DOCUMENTS

659
(FIVE YEARS 92)

H-INDEX

38
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Björn Gustafsson ◽  
Ahmed Sebbar

AbstractStarting from a Lagrangian action functional for two scalar fields we construct, by variational methods, the Laplacian Green function for a bounded domain and an appropriate stress tensor. By a further variation, imposed by a given vector field, we arrive at an interior version of the Hadamard variational formula, previously considered by P. Garabedian. It gives the variation of the Green function in terms of a pairing between the stress tensor and a strain tensor in the interior of the domain, this contrasting the classical Hadamard formula which is expressed as a pure boundary variation.


Author(s):  
Stephen J. Gardiner ◽  
Hermann Render

AbstractThis paper establishes extension results for harmonic functions which vanish on a conical surface. These are based on a detailed analysis of expansions for the Green function of an infinite cone.


2021 ◽  
pp. 1-11
Author(s):  
Catalin Picu ◽  
Jacob Merson

Abstract This article presents the displacement field produced by a point force acting on an athermal random fiber network (the Green function for the network). The problem is defined within the limits of linear elasticity and the field is obtained numerically for nonaffine networks characterized by various parameter sets. The classical Green function solution applies at distances from the point force larger than a threshold which is independent of the network parameters in the range studied. At smaller distances, the nonlocal nature of fiber interactions modifies the solution.


2021 ◽  
Vol 66 (4) ◽  
pp. 613-627
Author(s):  
Asif R. Khan ◽  
◽  
Josip Pecaric ◽  

We consider positivity of sum $\sum_{i=1}^np_if(x_i)$ involving convex functions of higher order. Analogous for integral $\int_a^bp(x)f(g(x))dx$ is also given. Representation of a function $f$ via the Fink identity and the Green function leads us to identities for which we obtain conditions for positivity of the mentioned sum and integral. We obtain bounds for integral remainders which occur in those identities as well as corresponding mean value theorems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jufang Wang ◽  
Changlong Yu ◽  
Boya Zhang ◽  
Si Wang

AbstractThe aim of this paper is to investigate the boundary value problem of a fractional q-difference equation with ϕ-Laplacian, where ϕ-Laplacian is a generalized p-Laplacian operator. We obtain the existence and nonexistence of positive solutions in terms of different eigenvalue intervals for this problem by means of the Green function and Guo–Krasnoselskii fixed point theorem on cones. Finally, we give some examples to illustrate the use of our results.


2021 ◽  
Vol 274 (1346) ◽  
Author(s):  
G. David ◽  
J. Feneuil ◽  
S. Mayboroda

Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1. To this end, we turn to degenerate elliptic equations. Let Γ ⊂ R n \Gamma \subset \mathbb {R}^n be an Ahlfors regular set of dimension d > n − 1 d>n-1 (not necessarily integer) and Ω = R n ∖ Γ \Omega = \mathbb {R}^n \setminus \Gamma . Let L = − div ⁡ A ∇ L = - \operatorname {div} A\nabla be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix A A are bounded from above and below by a multiple of dist ⁡ ( ⋅ , Γ ) d + 1 − n \operatorname {dist}(\cdot , \Gamma )^{d+1-n} . We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or L p L^p estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to L L , establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions. In another article to appear, we will prove that when Γ \Gamma is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator L L for which the harmonic measure given here is absolutely continuous with respect to the d d -Hausdorff measure on Γ \Gamma and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.


2021 ◽  
Vol 928 ◽  
Author(s):  
Y.F. Yang ◽  
G.X. Wu ◽  
K. Ren

The problem of interaction of a uniform current with a submerged horizontal circular cylinder in an ice-covered channel is considered. The fluid flow is described by linearized velocity potential theory and the ice sheet is treated as a thin elastic plate. The potential due to a source or the Green function satisfying all boundary conditions apart from that on the body surface is first derived. This can be used to derive the boundary integral equation for a body of arbitrary shape. It can also be used to obtain the solution due to multipoles by differentiating the Green function with its position directly. For a transverse circular cylinder, through distributing multipoles along its centre line, the velocity potential can be written in an infinite series with unknown coefficients, which can be determined from the impermeable condition on a body surface. A major feature here is that different from the free surface problem, or a channel without the ice sheet cover, this problem is fully three-dimensional because of the constraints along the intersection of the ice sheet with the channel wall. It has been also confirmed that there is an infinite number of critical speeds. Whenever the current speed passes a critical value, the force on the body and wave pattern change rapidly, and two more wave components are generated at the far-field. Extensive results are provided for hydroelastic waves and hydrodynamic forces when the ice sheet is under different edge conditions, and the insight of their physical features is discussed.


2021 ◽  
Vol 24 (5) ◽  
pp. 1629-1635
Author(s):  
Thomas Simon

Abstract We give a very simple proof of the positivity and unimodality of the Green function for the killed fractional Laplacian on the periodic domain. The argument relies on the Jacobi triple product and a probabilistic representation of the Green function. We also show by a contour integration that the Green function is completely monotone on the positive part of the periodic domain.


2021 ◽  
Vol 24 (5) ◽  
pp. 1507-1534
Author(s):  
Uyen Le ◽  
Dmitry E. Pelinovsky

Abstract The linear operator c + (−Δ) α/2, where c > 0 and (−Δ) α/2 is the fractional Laplacian on the periodic domain, arises in the existence of periodic travelling waves in the fractional Korteweg–de Vries equation. We establish a relation of the Green function of this linear operator with the Mittag–Leffler function, which was previously used in the context of the Riemann–Liouville and Caputo fractional derivatives. By using this relation, we prove that the Green function is strictly positive and single-lobe (monotonically decreasing away from the maximum point) for every c > 0 and every α ∈ (0, 2]. On the other hand, we argue from numerical approximations that in the case of α ∈ (2, 4], the Green function is positive and single-lobe for small c and non-positive and non-single lobe for large c.


Sign in / Sign up

Export Citation Format

Share Document