scholarly journals Resonance-based schemes for dispersive equations via decorated trees

2022 ◽  
Vol 10 ◽  
Author(s):  
Yvain Bruned ◽  
Katharina Schratz

Abstract We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher–Connes–Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them.

2019 ◽  
Vol 31 (06) ◽  
pp. 1950017
Author(s):  
Nguyen Viet Dang ◽  
Estanislao Herscovich

In this paper, we provide a simple pedagogical proof of the existence of covariant renormalizations in Euclidean perturbative quantum field theory on closed Riemannian manifolds, following the Epstein–Glaser philosophy. We rely on a local method that allows us to extend a distribution defined on an open set [Formula: see text] to the whole manifold [Formula: see text].


2008 ◽  
Vol 17 (07) ◽  
pp. 877-903 ◽  
Author(s):  
CHUN-CHUNG HSIEH

We express the first non-vanishing Massey–Milnor linkings in terms of Chern–Simons–Witten configuration space integrals in perturbative quantum field theory.


Sign in / Sign up

Export Citation Format

Share Document