scholarly journals THE IWASAWA MAIN CONJECTURE FOR HILBERT MODULAR FORMS

2015 ◽  
Vol 3 ◽  
Author(s):  
XIN WAN

Following the ideas and methods of a recent work of Skinner and Urban, we prove the one divisibility of the Iwasawa main conjecture for nearly ordinary Hilbert modular forms under certain local hypotheses. As a consequence, we prove that for a Hilbert modular form of parallel weight, trivial character, and good ordinary reduction at all primes dividing$p$, if the central critical$L$-value is zero then the$p$-adic Selmer group of it has rank at least one. We also prove that one of the local assumptions in the main result of Skinner and Urban can be removed by a base-change trick.

2013 ◽  
Vol 56 (1) ◽  
pp. 57-63
Author(s):  
CRISTIAN VIRDOL

AbstractIn this paper we generalize some results, obtained by Shimura, on the special values of L-functions of l-adic representations attached to quadratic CM-base change of Hilbert modular forms twisted by finite order characters. The generalization is to the case of the special values of L-functions of arbitrary base change to CM-number fields of l-adic representations attached to Hilbert modular forms twisted by some finite-dimensional representations.


2019 ◽  
Vol 15 (10) ◽  
pp. 2107-2114
Author(s):  
Liubomir Chiriac

The generalized Ramanujan Conjecture for cuspidal unitary automorphic representations [Formula: see text] on [Formula: see text] posits that [Formula: see text]. We prove that this inequality is strict if [Formula: see text] is generated by a Hilbert modular form of weight two, with complex multiplication, and [Formula: see text] is a finite place of degree one. Equivalently, the Satake parameters of [Formula: see text] are necessarily distinct. We also give examples where the equality case does occur for places [Formula: see text] of degree two.


2009 ◽  
Vol 145 (5) ◽  
pp. 1081-1113 ◽  
Author(s):  
Takeshi Saito

AbstractFor the p-adic Galois representation associated to a Hilbert modular form, Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a finite place not dividing p is compatible with the local Langlands correspondence. Under the same assumption, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also prove that the monodromy-weight conjecture holds for such representations.


2016 ◽  
Vol 12 (03) ◽  
pp. 691-723 ◽  
Author(s):  
Ren-He Su

In 1975, Cohen constructed a kind of one-variable modular forms of half-integral weight, say [Formula: see text], whose [Formula: see text]th Fourier coefficient only occurs when [Formula: see text] is congruent to 0 or 1 modulo 4. The space of modular forms whose Fourier coefficients have the above property is called Kohnen plus space, initially introduced by Kohnen in 1980. Recently, Hiraga and Ikeda generalized the plus space to the spaces for half-integral weight Hilbert modular forms with respect to general totally real number fields. The [Formula: see text]th Fourier coefficients [Formula: see text] of a Hilbert modular form of parallel weight [Formula: see text] lying in the generalized Kohnen plus space does not vanish only if [Formula: see text] is congruent to a square modulo 4. In this paper, we use an adelic way to construct Eisenstein series of parallel half-integral weight belonging to the generalized Kohnen plus spaces and give an explicit form for their Fourier coefficients. These series give a generalization of the one introduced by Cohen. Moreover, we show that the Kohnen plus space is generated by the cusp forms and the Eisenstein series we constructed as a vector space over [Formula: see text].


2019 ◽  
Vol 72 (1) ◽  
pp. 57-88
Author(s):  
Adel Betina

AbstractJ. Bellaïche and M. Dimitrov showed that the $p$-adic eigencurve is smooth but not étale over the weight space at $p$-regular theta series attached to a character of a real quadratic field $F$ in which $p$ splits. In this paper we prove the existence of an isomorphism between the subring fixed by the Atkin–Lehner involution of the completed local ring of the eigencurve at these points and a universal ring representing a pseudo-deformation problem. Additionally, we give a precise criterion for which the ramification index is exactly 2. We finish this paper by proving the smoothness of the nearly ordinary and ordinary Hecke algebras for Hilbert modular forms over $F$ at the overconvergent cuspidal Eisenstein points, being the base change lift for $\text{GL}(2)_{/F}$ of these theta series. Our approach uses deformations and pseudo-deformations of reducible Galois representations.


Sign in / Sign up

Export Citation Format

Share Document