scholarly journals CODIMENSION TWO CYCLES IN IWASAWA THEORY AND ELLIPTIC CURVES WITH SUPERSINGULAR REDUCTION

2019 ◽  
Vol 7 ◽  
Author(s):  
ANTONIO LEI ◽  
BHARATHWAJ PALVANNAN

A result of Bleher, Chinburg, Greenberg, Kakde, Pappas, Sharifi and Taylor has initiated the topic of higher codimension Iwasawa theory. As a generalization of the classical Iwasawa main conjecture, they prove a relationship between analytic objects (a pair of Katz’s $2$ -variable $p$ -adic $L$ -functions) and algebraic objects (two ‘everywhere unramified’ Iwasawa modules) involving codimension two cycles in a $2$ -variable Iwasawa algebra. We prove a result by considering the restriction to an imaginary quadratic field $K$ (where an odd prime $p$ splits) of an elliptic curve $E$ , defined over  $\mathbb{Q}$ , with good supersingular reduction at $p$ . On the analytic side, we consider eight pairs of $2$ -variable $p$ -adic $L$ -functions in this setup (four of the $2$ -variable $p$ -adic $L$ -functions have been constructed by Loeffler and a fifth $2$ -variable $p$ -adic $L$ -function is due to Hida). On the algebraic side, we consider modifications of fine Selmer groups over the $\mathbb{Z}_{p}^{2}$ -extension of $K$ . We also provide numerical evidence, using algorithms of Pollack, towards a pseudonullity conjecture of Coates–Sujatha.

2014 ◽  
Vol 66 (4) ◽  
pp. 826-843 ◽  
Author(s):  
Byoung Du (B. D.) Kim

AbstractLet E be an elliptic curve over ℚ that has good supersingular reduction at p > 3. We construct what we call the ±/±-Selmer groups of E over the ℤ2p-extension of an imaginary quadratic field K when the prime p splits completely over K/ℚ, and prove that they enjoy a property analogous to Mazur's control theorem.Furthermore, we propose a conjectural connection between the±/±-Selmer groups and Loeffler's two-variable ±/±-p-adic L-functions of elliptic curves.


Author(s):  
Chan-Ho Kim ◽  
Masato Kurihara

AbstractIn this paper, we study the Fitting ideals of Selmer groups over finite subextensions in the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$ of an elliptic curve over $\mathbb{Q}$. Especially, we present a proof of the “weak main conjecture” à la Mazur and Tate for elliptic curves with good (supersingular) reduction at an odd prime $p$. We also prove the “strong main conjecture” suggested by the second named author under the validity of the $\pm $-main conjecture and the vanishing of a certain error term. The key idea is the explicit comparison among “finite layer objects”, “$\pm $-objects”, and “fine objects” in Iwasawa theory. The case of good ordinary reduction is also treated.


Author(s):  
Kâzım Büyükboduk ◽  
Antonio Lei

AbstractThis article is a continuation of our previous work [7] on the Iwasawa theory of an elliptic modular form over an imaginary quadratic field $K$, where the modular form in question was assumed to be ordinary at a fixed odd prime $p$. We formulate integral Iwasawa main conjectures at non-ordinary primes $p$ for suitable twists of the base change of a newform $f$ to an imaginary quadratic field $K$ where $p$ splits, over the cyclotomic ${\mathbb{Z}}_p$-extension, the anticyclotomic ${\mathbb{Z}}_p$-extensions (in both the definite and the indefinite cases) as well as the ${\mathbb{Z}}_p^2$-extension of $K$. In order to do so, we define Kobayashi–Sprung-style signed Coleman maps, which we use to introduce doubly signed Selmer groups. In the same spirit, we construct signed (integral) Beilinson–Flach elements (out of the collection of unbounded Beilinson–Flach elements of Loeffler–Zerbes), which we use to define doubly signed $p$-adic $L$-functions. The main conjecture then relates these two sets of objects. Furthermore, we show that the integral Beilinson–Flach elements form a locally restricted Euler system, which in turn allow us to deduce (under certain technical assumptions) one inclusion in each one of the four main conjectures we formulate here (which may be turned into equalities in favorable circumstances).


2018 ◽  
Vol 30 (4) ◽  
pp. 887-913 ◽  
Author(s):  
Kâzım Büyükboduk ◽  
Antonio Lei

Abstract This is the first in a series of articles where we will study the Iwasawa theory of an elliptic modular form f along the anticyclotomic {\mathbb{Z}_{p}} -tower of an imaginary quadratic field K where the prime p splits completely. Our goal in this portion is to prove the Iwasawa main conjecture for suitable twists of f assuming that f is p-ordinary, both in the definite and indefinite setups simultaneously, via an analysis of Beilinson–Flach elements.


2015 ◽  
Vol 219 ◽  
pp. 269-302
Author(s):  
Kenichi Bannai ◽  
Hidekazu Furusho ◽  
Shinichi Kobayashi

AbstractConsider an elliptic curve defined over an imaginary quadratic fieldKwith good reduction at the primes abovep≥ 5 and with complex multiplication by the full ring of integersof K. In this paper, we constructp-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then provep-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.


2004 ◽  
Vol 56 (1) ◽  
pp. 194-208
Author(s):  
A. Saikia

AbstractSuppose K is an imaginary quadratic field and E is an elliptic curve over a number field F with complex multiplication by the ring of integers in K. Let p be a rational prime that splits as in K. Let Epn denote the pn-division points on E. Assume that F(Epn) is abelian over K for all n ≥ 0. This paper proves that the Pontrjagin dual of the -Selmer group of E over F(Ep∞) is a finitely generated free Λ-module, where Λ is the Iwasawa algebra of . It also gives a simple formula for the rank of the Pontrjagin dual as a Λ-module.


2011 ◽  
Vol 147 (3) ◽  
pp. 803-838 ◽  
Author(s):  
Antonio Lei

AbstractWe generalise works of Kobayashi to give a formulation of the Iwasawa main conjecture for modular forms at supersingular primes. In particular, we give analogous definitions of the plus and minus Coleman maps for normalised new forms of arbitrary weights and relate Pollack’s p-adic L-functions to the plus and minus Selmer groups. In addition, by generalising works of Pollack and Rubin on CM elliptic curves, we prove the ‘main conjecture’ for CM modular forms.


2014 ◽  
Vol 915-916 ◽  
pp. 1336-1340
Author(s):  
Jian Jun Hu

The Complex Multiplication (CM) method is a widely used technique for constructing elliptic curves over finite fields. The key point in this method is parameter generation of the elliptic curve and root compution of a special type of class polynomials. However, there are several class polynomials which can be used in the CM method, having much smaller coefficients, and fulfilling the prerequisite that their roots can be easily transformed to the roots of the corresponding Hilbert polynomials.In this paper, we provide a method which can construct elliptic curves by Ramanujan's class invariants. We described the algorithm for the construction of elliptic curves (ECs) over imaginary quadratic field and given the transformation from their roots to the roots of the corresponding Hilbert polynomials. We compared the efficiency in the use of this method and other methods.


2009 ◽  
Vol 05 (02) ◽  
pp. 229-256 ◽  
Author(s):  
A. BANDINI ◽  
I. LONGHI

Let F be a global field of characteristic p > 0, 𝔽/F a Galois extension with [Formula: see text] and E/F a non-isotrivial elliptic curve. We study the behavior of Selmer groups SelE(L)l (l any prime) as L varies through the subextensions of 𝔽 via appropriate versions of Mazur's Control Theorem. In the case l = p, we let 𝔽 = ∪ 𝔽d where 𝔽d/F is a [Formula: see text]-extension. We prove that Sel E(𝔽d)p is a cofinitely generated ℤp[[ Gal (ℤd/F)]]-module and we associate to its Pontrjagin dual a Fitting ideal. This allows to define an algebraic L-function associated to E in ℤp[[Gal(ℤ/F)]], providing an ingredient for a function field analogue of Iwasawa's Main Conjecture for elliptic curves.


Author(s):  
DANIEL DELBOURGO ◽  
ANTONIO LEI

AbstractLet$E_{/{\mathbb{Q}}}$be a semistable elliptic curve, andp≠ 2 a prime of bad multiplicative reduction. For each Lie extension$\mathbb{Q}$FT/$\mathbb{Q}$with Galois groupG∞≅$\mathbb{Z}$p⋊$\mathbb{Z}$p×, we constructp-adicL-functions interpolating Artin twists of the Hasse–WeilL-series of the curveE. Through the use of congruences, we next prove a formula for the analytic λ-invariant over the false Tate tower, analogous to Chern–Yang Lee's results on its algebraic counterpart. If one assumes the Pontryagin dual of the Selmer group belongs to the$\mathfrak{M}_{\mathcal{H}}$(G∞)-category, the leading terms of its associated Akashi series can then be computed, allowing us to formulate a non-commutative Iwasawa Main Conjecture in the multiplicative setting.


Sign in / Sign up

Export Citation Format

Share Document