Characteristics of the turbulent energy dissipation rate in a cylinder wake

2017 ◽  
Vol 835 ◽  
pp. 271-300 ◽  
Author(s):  
J. G. Chen ◽  
Y. Zhou ◽  
R. A. Antonia ◽  
T. M. Zhou

This work aims to improve our understanding of the turbulent energy dissipation rate in the wake of a circular cylinder. Ten of the twelve velocity derivative terms which make up the energy dissipation rate are simultaneously obtained with a probe composed of four X-wires. Measurements are made in the plane of mean shear at$x/d=10$, 20 and 40, where$x$is the streamwise distance from the cylinder axis and$d$is the cylinder diameter, at a Reynolds number of$2.5\times 10^{3}$based on$d$and free-stream velocity. Both statistical and topological features of the velocity derivatives as well as the energy dissipation rate, approximated by a surrogate based on the assumption of homogeneity in the transverse plane, are examined. The spectra of the velocity derivatives indicate that local axisymmetry is first satisfied at higher wavenumbers while the departure at lower wavenumbers is caused by the Kármán vortex street. The spectral method proposed by Djenidi & Antonia (Exp. Fluids, vol. 53, 2012, pp. 1005–1013) based on the universality of the dissipation range of the longitudinal velocity spectrum normalized by the Kolmogorov scales also applies in the present flow despite the strong perturbation from the Kármán vortex street and violation of local isotropy at small$x/d$. The appropriateness of the spectral chart method is consistent with Antoniaet al.’s (Phys. Fluids, vol. 26, 2014, 45105) observation that the two major assumptions in Kolmogorov’s first similarity hypothesis, i.e. very large Taylor microscale Reynolds number and local isotropy, can be significantly relaxed. The data also indicate that vorticity spectra are more sensitive, when testing the first similarity hypothesis, than velocity spectra. They also reveal that the velocity derivatives$\unicode[STIX]{x2202}u/\unicode[STIX]{x2202}y$and$\unicode[STIX]{x2202}v/\unicode[STIX]{x2202}x$play an important role in the interaction between large and small scales in the present flow. The phase-averaged data indicate that the energy dissipation is concentrated mostly within the coherent spanwise vortex rollers, in contrast with the model of Hussain (J. Fluid Mech., vol. 173, 1986, pp. 303–356) and Hussain & Hayakawa (J. Fluid Mech., vol. 180, 1987, p. 193), who conjectured that it resides mainly in regions of strong turbulent mixing.

1995 ◽  
Author(s):  
Viktor A. Banakh ◽  
Natalia N. Kerkis ◽  
Igor N. Smalikho ◽  
Friedrich Koepp ◽  
Christian Werner

2015 ◽  
Vol 777 ◽  
pp. 151-177 ◽  
Author(s):  
S. L. Tang ◽  
R. A. Antonia ◽  
L. Djenidi ◽  
H. Abe ◽  
T. Zhou ◽  
...  

The transport equation for the mean turbulent energy dissipation rate $\overline{{\it\epsilon}}$ along the centreline of a fully developed channel flow is derived by applying the limit at small separations to the two-point budget equation. Since the ratio of the isotropic energy dissipation rate to the mean turbulent energy dissipation rate $\overline{{\it\epsilon}}_{iso}/\overline{{\it\epsilon}}$ is sufficiently close to 1 on the centreline, our main focus is on the isotropic form of the transport equation. It is found that the imbalance between the production of $\overline{{\it\epsilon}}$ due to vortex stretching and the destruction of $\overline{{\it\epsilon}}$ caused by the action of viscosity is governed by the diffusion of $\overline{{\it\epsilon}}$ by the wall-normal velocity fluctuation. This imbalance is intrinsically different from the advection-driven imbalance in decaying-type flows, such as grid turbulence, jets and wakes. In effect, the different types of imbalance represent different constraints on the relation between the skewness of the longitudinal velocity derivative $S_{1,1}$ and the destruction coefficient $G$ of enstrophy in different flows, thus resulting in non-universal approaches of $S_{1,1}$ towards a constant value as the Taylor microscale Reynolds number, $R_{{\it\lambda}}$, increases. For example, the approach is slower for the measured values of $S_{1,1}$ along either the channel or pipe centreline than along the axis in the self-preserving region of a round jet. The data for $S_{1,1}$ collected in different flows strongly suggest that, in each flow, the magnitude of $S_{1,1}$ is bounded, the value being slightly larger than 0.5.


Sign in / Sign up

Export Citation Format

Share Document