coherent doppler lidar
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 40)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
TIANWEN WEI ◽  
Haiyun Xia ◽  
Kenan Wu ◽  
Yuanjian Yang ◽  
Qi Liu ◽  
...  

2021 ◽  
Author(s):  
Dawei Tang ◽  
Tianwen Wei ◽  
Jinlong Yuan ◽  
Haiyun Xia ◽  
Xiankang Dou

Abstract. Bioaerosols are usually defined as aerosols derived from biological systems such as bacteria, fungi, and viruses. They play an important role in atmospheric physical and chemical processes including ice nucleation and cloud condensation. As such, their dispersion affects not only public health but regional climate as well. Lidar is an effective technique for aerosol detection and pollution monitoring. It is also used to profile the vertical distribution of wind vectors. In this paper, a coherent Doppler wind lidar (CDWL) was deployed for wind and aerosol detection in Hefei, China, from 11 to 20 March in 2020. A wideband integrated bioaerosol sensor (WIBS) was deployed to monitor variations in local fluorescent bioaerosol levels. During observation, three aerosol transport events were captured. The WIBS data show that during these transport events, several types of fluorescent aerosol particles exhibit abnormal increases in either their concentration, number fractions to total particles, or number fractions to whole fluorescent aerosols. These increases are attributed to transported external fluorescent bioaerosols instead of local bioaerosols. Based on the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectory model and the characteristics of external aerosols in WIBS, their possible sources, transport paths, and components are discussed. This work proves the influence of external aerosol transport on local high particulate matter (PM) pollution and fluorescent aerosol particle composition. The combination of WIBS and CDWL expands the aerosol monitoring parameters and proves to be a potential method for the real-time monitoring of fluorescent biological aerosol transport events. It contributes to the further understanding of bioaerosol transport.


2021 ◽  
Vol 13 (16) ◽  
pp. 3259
Author(s):  
Xiaoye Wang ◽  
Guangyao Dai ◽  
Songhua Wu ◽  
Kangwen Sun ◽  
Xiaoquan Song ◽  
...  

The direct and indirect radiation forcing of aerosol particles deeply affect the energy budget and the atmospheric chemical and physical processes. To retrieve the vertical aerosol mass fluxes and to investigate the vertical transport process of aerosol by a coherent Doppler lidar (CDL), a practical method for instrumental calibration and aerosol optical properties retrieval based on CDL and sun photometer synchronization observations has been developed. A conversion of aerosol optical properties to aerosol microphysical properties is achieved by applying a well-developed algorithm. Furthermore, combining the vertical velocity measured simultaneously with a CDL, we use the eddy covariance (EC) method to retrieve the vertical turbulent aerosol mass fluxes by a CDL and sun photometer with a spatial resolution of 15 m and a temporal resolution of 1 s throughout the planetary boundary layer (PBL). In this paper, we present a measurement case of 24-h continuous fluxes observations and analyze the diurnal variation of the vertical velocity, the aerosol backscatter coefficient at 1550 nm, the mean aerosol mass concentration, and the vertical aerosol mass fluxes on 13 April 2020. Finally, the main relative errors in aerosol mass flux retrieval, including sample error σF,S, aerosol optical properties retrieval error σF,R, and error introduced from aerosol microphysical properties retrieval algorithm σF,I, are evaluated. The sample error σF,S is the dominating error which increases with height except during 12:00–13:12 LST. The aerosol optical properties retrieval error σF,R is 21% and the error introduced from the aerosol microphysical properties retrieval algorithm σF,I is less than 50%.


2021 ◽  
Vol 13 (11) ◽  
pp. 2071
Author(s):  
Viktor A. Banakh ◽  
Igor N. Smalikho ◽  
Andrey V. Falits ◽  
Artem M. Sherstobitov

The strategy providing an estimation of both the mean velocity and the temporal and spatial spectra of radial velocity from data of the same pulse coherent Doppler lidar is proposed. Theoretical relations taking into account the averaging over the probing volume while estimating the spectra of fluctuations of the radial velocity measured by lidar are presented. The method of estimation of the turbulent energy dissipation rate and the variance of the vertical component of wind velocity vector from the spectra of radial velocity is carried out. The results of the comparative experiments are discussed and used in further studies of wind turbulence in the atmospheric boundary layer during the formation of low-level jets and propagation of internal gravity waves.


Author(s):  
Guangyao Dai ◽  
Xiaoye Wang ◽  
Kangwen Sun ◽  
Songhua Wu ◽  
Xiaoquan Song ◽  
...  

AbstractA practical method for instrumental calibration and aerosol optical properties retrieval based on Coherent Doppler Lidar (CDL) and sun-photometer is presented in this paper. To verify its feasibility and accuracy, this method is applied into three field experiments in 2019 and 2020. In this method, multi-wavelength (440 nm, 670 nm, 870 nm and 1020 nm) Aerosol Optical Depth (AOD) from sun-photometer measurements are used to estimate AOD at 1550 nm and calibrate integrated CDL backscatter signal. Then, it is validated by comparing the retrieved calibrated AOD at 1550 nm from CDL signal and that from sun-photometer measurements. Well agreement between them with the correlation of 0.96, the RMSE of 0.0085 and the mean relative error of 22% is found. From the comparison results of these three experiments, sun-photometer is verified to be an effective reference instrument for the calibration of CDL return signal and the aerosol optical properties measurement with CDL is feasible. It is expected to promote the study on the aerosol flux and transport mechanism in the planetary boundary layer with the widely deployed CDLs.


Sign in / Sign up

Export Citation Format

Share Document