scholarly journals Thermal boundary layer structure in low-Prandtl-number turbulent convection

2021 ◽  
Vol 910 ◽  
Author(s):  
Ambrish Pandey

Abstract

2020 ◽  
Vol 5 (11) ◽  
Author(s):  
Robert S. Long ◽  
Jon E. Mound ◽  
Christopher J. Davies ◽  
Steven M. Tobias

2010 ◽  
Vol 652 ◽  
pp. 299-331
Author(s):  
P. G. DANIELS

This paper describes the boundary-layer structure of the steady flow of an infinite Prandtl number fluid in a two-dimensional rectangular cavity driven by differential heating of the upper surface. The lower surface and sidewalls of the cavity are thermally insulated and the upper surface is assumed to be either shear-free or rigid. In the limit of large Rayleigh number (R → ∞), the solution involves a horizontal boundary layer at the upper surface of depth of order R−1/5 where the main variation in the temperature field occurs. For a monotonic temperature distribution at the upper surface, fluid is driven to the colder end of the cavity where it descends within a narrow convection-dominated vertical layer before returning to the horizontal layer. A numerical solution of the horizontal boundary-layer problem is found for the case of a linear temperature distribution at the upper surface. At greater depths, of order R−2/15 for a shear-free surface and order R−9/65 for a rigid upper surface, a descending plume near the cold sidewall, together with a vertically stratified interior flow, allow the temperature to attain an approximately constant value throughout the remainder of the cavity. For a shear-free upper surface, this constant temperature is predicted to be of order R−1/15 higher than the minimum temperature of the upper surface, whereas for a rigid upper surface it is predicted to be of order R−2/65 higher.


2016 ◽  
Vol 802 ◽  
pp. 147-173 ◽  
Author(s):  
Janet D. Scheel ◽  
Jörg Schumacher

Statistical properties of turbulent Rayleigh–Bénard convection at low Prandtl numbers $Pr$, which are typical for liquid metals such as mercury or gallium ($Pr\simeq 0.021$) or liquid sodium ($Pr\simeq 0.005$), are investigated in high-resolution three-dimensional spectral element simulations in a closed cylindrical cell with an aspect ratio of one and are compared to previous turbulent convection simulations in air for $Pr=0.7$. We compare the scaling of global momentum and heat transfer. The scaling exponent $\unicode[STIX]{x1D6FD}$ of the power law $Nu=\unicode[STIX]{x1D6FC}Ra^{\unicode[STIX]{x1D6FD}}$ is $\unicode[STIX]{x1D6FD}=0.265\pm 0.01$ for $Pr=0.005$ and $\unicode[STIX]{x1D6FD}=0.26\pm 0.01$ for $Pr=0.021$, which are smaller than that for convection in air ($Pr=0.7$, $\unicode[STIX]{x1D6FD}=0.29\pm 0.01$). These exponents are in agreement with experiments. Mean profiles of the root-mean-square velocity as well as the thermal and kinetic energy dissipation rates have growing amplitudes with decreasing Prandtl number, which underlies a more vigorous bulk turbulence in the low-$Pr$ regime. The skin-friction coefficient displays a Reynolds number dependence that is close to that of an isothermal, intermittently turbulent velocity boundary layer. The thermal boundary layer thicknesses are larger as $Pr$ decreases and conversely the velocity boundary layer thicknesses become smaller. We investigate the scaling exponents and find a slight decrease in exponent magnitude for the thermal boundary layer thickness as $Pr$ decreases, but find the opposite case for the velocity boundary layer thickness scaling. A growing area fraction of turbulent patches close to the heating and cooling plates can be detected by exceeding a locally defined shear Reynolds number threshold. This area fraction is larger for lower $Pr$ at the same $Ra$, but the scaling exponent of its growth with Rayleigh number is reduced. Our analysis of the kurtosis of the locally defined shear Reynolds number demonstrates that the intermittency in the boundary layer is significantly increased for the lower Prandtl number and for sufficiently high Rayleigh number compared to convection in air. This complements our previous findings of enhanced bulk intermittency in low-Prandtl-number convection.


Sign in / Sign up

Export Citation Format

Share Document