scholarly journals A rigorous bound on the scaling of dissipation with velocity amplitude in flow past a sphere

2021 ◽  
Vol 916 ◽  
Author(s):  
A. Tilgner

Abstract

2004 ◽  
Vol 18 (2-4) ◽  
pp. 265-276 ◽  
Author(s):  
Sungsu Lee ◽  
Kyung-Soo Yang

2019 ◽  
Vol 31 (11) ◽  
pp. 113105
Author(s):  
Kostas D. Housiadas ◽  
Antony N. Beris

Author(s):  
John Newman ◽  
Vincent Battaglia

1961 ◽  
Vol 16 (3-4) ◽  
pp. 231-241 ◽  
Author(s):  
John C. Slattery ◽  
R.Byron Bird

1973 ◽  
Vol 5 (5) ◽  
pp. 789-794
Author(s):  
K. G. Savinov
Keyword(s):  

2016 ◽  
Vol 804 ◽  
Author(s):  
Anikesh Pal ◽  
Sutanu Sarkar ◽  
Antonio Posa ◽  
Elias Balaras

Direct numerical simulations (DNS) are performed to study the behaviour of flow past a sphere in the regime of high stratification (low Froude number $Fr$). In contrast to previous results at lower Reynolds numbers, which suggest monotone suppression of turbulence with increasing stratification in flow past a sphere, it is found that, below a critical $Fr$, increasing the stratification induces unsteady vortical motion and turbulent fluctuations in the near wake. The near wake is quantified by computing the energy spectra, the turbulence energy equation, the partition of energy into horizontal and vertical components, and the buoyancy Reynolds number. These diagnostics show that the stabilizing effect of buoyancy changes flow over the sphere to flow around the sphere. This qualitative change in the flow leads to a new regime of unsteady vortex shedding in the horizontal planes and intensified horizontal shear which result in turbulence regeneration.


2013 ◽  
pp. 159-182
Author(s):  
William E. Langlois ◽  
Michel O. Deville
Keyword(s):  

2014 ◽  
Vol 746 ◽  
pp. 466-497 ◽  
Author(s):  
John F. Rudge

AbstractA series of analytical solutions are presented for viscous compacting flow past a rigid impermeable sphere. The sphere is surrounded by a two-phase medium consisting of a viscously deformable solid matrix skeleton through which a low-viscosity liquid melt can percolate. The flow of the two-phase medium is described by McKenzie’s compaction equations, which combine Darcy flow of the liquid melt with Stokes flow of the solid matrix. The analytical solutions are found using an extension of the Papkovich–Neuber technique for Stokes flow. Solutions are presented for the three components of linear flow past a sphere: translation, rotation and straining flow. Faxén laws for the force, torque and stresslet on a rigid sphere in an arbitrary compacting flow are derived. The analytical solutions provide instantaneous solutions to the compaction equations in a uniform medium, but can also be used to numerically calculate an approximate evolution of the porosity over time whilst the porosity variations remain small. These solutions will be useful for interpreting the results of deformation experiments on partially molten rocks.


Sign in / Sign up

Export Citation Format

Share Document