Variable viscosity effects for the steady flow past a sphere

2019 ◽  
Vol 31 (11) ◽  
pp. 113105
Author(s):  
Kostas D. Housiadas ◽  
Antony N. Beris
2004 ◽  
Vol 18 (2-4) ◽  
pp. 265-276 ◽  
Author(s):  
Sungsu Lee ◽  
Kyung-Soo Yang

1997 ◽  
Vol 345 ◽  
pp. 101-131
Author(s):  
M. D. KUNKA ◽  
M. R. FOSTER

Because of the importance of oscillatory components in the oncoming flow at certain oceanic topographic features, we investigate the oscillatory flow past a circular cylinder in an homogeneous rotating fluid. When the oncoming flow is non-reversing, and for relatively low-frequency oscillations, the modifications to the equivalent steady flow arise principally in the ‘quarter layer’ on the surface of the cylinder. An incipient-separation criterion is found as a limitation on the magnitude of the Rossby number, as in the steady-flow case. We present exact solutions for a number of asymptotic cases, at both large frequency and small nonlinearity. We also report numerical solutions of the nonlinear quarter-layer equation for a range of parameters, obtained by a temporal integration. Near the rear stagnation point of the cylinder, we find a generalized velocity ‘plateau’ similar to that of the steady-flow problem, in which all harmonics of the free-stream oscillation may be present. Further, we determine that, for certain initial conditions, the boundary-layer flow develops a finite-time singularity in the neighbourhood of the rear stagnation point.


1984 ◽  
Vol 51 (4) ◽  
pp. 937-939 ◽  
Author(s):  
W. C. Chin
Keyword(s):  

Author(s):  
John Newman ◽  
Vincent Battaglia

Sign in / Sign up

Export Citation Format

Share Document