low froude number
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
pp. 109314
Author(s):  
Cheng-An Wang ◽  
Duo Xu ◽  
Ji-Peng Gao ◽  
Jian-Yu Tan ◽  
Zhi-Quan Zhou

2021 ◽  
Vol 147 (4) ◽  
pp. 04021010
Author(s):  
R. Steinke ◽  
M. Dai Prá ◽  
R. A. Lopardo ◽  
M. G. Marques ◽  
J. F. de Melo ◽  
...  

2021 ◽  
Author(s):  
Yujun Yu ◽  
Shuya Wang ◽  
Xu Chen

<p>Internal Solitary Waves (ISW) are ubiquitous in the Andaman Sea as revealed by Synthetic Aperture Radar (SAR) images, but their generation mechanism and corresponding influence factors remain unknown. Based on a non-hydrostatic two-dimensional model, the generation of ISW across the channel between the Batti Malv Island and the Car Nicobar Island is investigated. Influences of the topography characteristics, seasonal stratification and tidal forcing are analyzed with a series of sensitivity runs. The simulated results indicate that no apparent ISW appear near the ridge because of small tidal excursion and low Froude number. Instead, they are evolved from the disintegrated internal tides which gradually steepen due to nonlinearity during propagation. East-west asymmetry of ISWs is revealed, which can be attributed to different topographic features on the two sides of the ridge. Two sills on the east side of the ridge further complicate the generation of eastward-propagating internal tides, resulting in the enhancement of ISWs in the Andaman Sea. Seasonally varying stratification has minor effect on the generation and evolution of ISWs. In addition, generation of ISW is mainly contributed by semidiurnal tidal forcing, while diurnal forcing only generates linear internal tides.</p>


2021 ◽  
Vol 70 ◽  
pp. 31-44
Author(s):  
E. Audusse ◽  
V. Dubos ◽  
A. Duran ◽  
N. Gaveau ◽  
Y. Nasseri ◽  
...  

We investigate in this work a class of numerical schemes dedicated to the non-linear Shallow Water equations with topography and Coriolis force. The proposed algorithms rely on Finite Volume approximations formulated on collocated and staggered meshes, involving appropriate diffusion terms in the numerical fluxes, expressed as discrete versions of the linear geostrophic balance. It follows that, contrary to standard Finite-Volume approaches, the linear versions of the proposed schemes provide a relevant approximation of the geostrophic equilibrium. We also show that the resulting methods ensure semi-discrete energy estimates. Numerical experiments exhibit the efficiency of the approach in the presence of Coriolis force close to the geostrophic balance, especially at low Froude number regimes.


2021 ◽  
Vol 33 (1) ◽  
pp. 013308
Author(s):  
Tiezhi Sun ◽  
Heng Wang ◽  
Chongbin Shi ◽  
Zhi Zong ◽  
Guiyong Zhang

2020 ◽  
Vol 8 (3) ◽  
pp. 196
Author(s):  
Haixiao Jing ◽  
Yanyan Gao ◽  
Changgen Liu ◽  
Jingming Hou

Understanding the propagation of landslide-generated water waves is of great help against tsunami hazards. In order to investigate the effects of landslide shapes on the far-field leading wave generated by a submerged landslide at a constant depth, three linear wave models with different degrees of dispersive properties are employed in this study. The linear fully dispersive model is then validated by comparing the results against the experimental data available for landslides with a low Froude number. Three simplified shapes of landslides with the same volume, which are unnatural for a body of incoherent material, are used to investigate the effects of landslide shapes on the far-field properties of the generated leading wave over a flat seabed. The results show that the far-field leading crest over a constant depth is independent of the exact landslide shape and is invalid at a shallow water depth. Therefore, the most popular non-dispersive model (also called the shallow water wave model) cannot be used to reproduce the phenomenon. The weakly dispersive wave model can predict this phenomenon well. If only the leading wave is considered, this model is accurate up to at least μ = h0/Lc = 0.6, where h0 is the water depth and Lc denotes the characteristic length of the landslide.


Sign in / Sign up

Export Citation Format

Share Document