Moments for multidimensional Mandelbrot cascades

2016 ◽  
Vol 53 (1) ◽  
pp. 1-21
Author(s):  
Chunmao Huang

Abstract We consider the distributional equation Z =D ∑k=1NAkZ(k), where N is a random variable taking value in N0 = {0, 1, . . .}, A1, A2, . . . are p x p nonnegative random matrices, and Z, Z(1), Z(2), . . ., are independent and identically distributed random vectors in R+p with R+ = [0, ∞), which are independent of (N, A1, A2, . . .). Let {Yn} be the multidimensional Mandelbrot martingale defined as sums of products of random matrices indexed by nodes of a Galton–Watson tree plus an appropriate vector. Its limit Y is a solution of the equation above. For α > 1, we show a sufficient condition for E|Y|α ∈ (0, ∞). Then for a nondegenerate solution Z of the distributional equation above, we show the decay rates of Ee-t∙Z as |t| → ∞ and those of the tail probability P(y ∙ Z ≤ x) as x → 0 for given y = (y1, . . ., yp) ∈ R+p, and the existence of the harmonic moments of y ∙ Z. As an application, these results concerning the moments (of positive and negative orders) of Y are applied to a special multitype branching random walk. Moreover, for the case where all the vectors and matrices of the equation above are complex, a sufficient condition for the Lα convergence and the αth-moment of the Mandelbrot martingale {Yn} are also established.

2003 ◽  
Vol 8 (0) ◽  
pp. 43-50
Author(s):  
Frédérique Duheille-Bienvenue ◽  
Nadine Guillotin-Plantard

2013 ◽  
Vol 50 (3) ◽  
pp. 893-899
Author(s):  
K. B. Athreya ◽  
Jyy-I Hong

In a discrete-time single-type Galton--Watson branching random walk {Zn, ζn}n≤ 0, where Zn is the population of the nth generation and ζn is a collection of the positions on ℝ of the Zn individuals in the nth generation, let Yn be the position of a randomly chosen individual from the nth generation and Zn(x) be the number of points in ζn that are less than or equal to x for x∈ℝ. In this paper we show in the explosive case (i.e. m=E(Z1∣ Z0=1)=∞) when the offspring distribution is in the domain of attraction of a stable law of order α,0 <α<1, that the sequence of random functions {Zn(x)/Zn:−∞<x<∞} converges in the finite-dimensional sense to {δx:−∞<x<∞}, where δx≡ 1{N≤ x} and N is an N(0,1) random variable.


2013 ◽  
Vol 50 (03) ◽  
pp. 893-899 ◽  
Author(s):  
K. B. Athreya ◽  
Jyy-I Hong

In a discrete-time single-type Galton--Watson branching random walk {Z n , ζ n } n≤ 0, where Z n is the population of the nth generation and ζ n is a collection of the positions on ℝ of the Z n individuals in the nth generation, let Y n be the position of a randomly chosen individual from the nth generation and Z n (x) be the number of points in ζ n that are less than or equal to x for x∈ℝ. In this paper we show in the explosive case (i.e. m=E(Z 1∣ Z 0=1)=∞) when the offspring distribution is in the domain of attraction of a stable law of order α,0 &lt;α&lt;1, that the sequence of random functions {Z n (x)/Z n :−∞&lt;x&lt;∞} converges in the finite-dimensional sense to {δ x :−∞&lt;x&lt;∞}, where δ x ≡ 1 {N≤ x} and N is an N(0,1) random variable.


2015 ◽  
Vol 47 (03) ◽  
pp. 741-760
Author(s):  
Xinxin Chen

We consider a branching random walk. Biggins and Kyprianou (2004) proved that, in the boundary case, the associated derivative martingale converges almost surely to a finite nonnegative limit, whose law serves as a fixed point of a smoothing transformation (Mandelbrot's cascade). In this paper, we give a necessary and sufficient condition for the nontriviality of the limit in this boundary case.


2015 ◽  
Vol 47 (3) ◽  
pp. 741-760 ◽  
Author(s):  
Xinxin Chen

We consider a branching random walk. Biggins and Kyprianou (2004) proved that, in the boundary case, the associated derivative martingale converges almost surely to a finite nonnegative limit, whose law serves as a fixed point of a smoothing transformation (Mandelbrot's cascade). In this paper, we give a necessary and sufficient condition for the nontriviality of the limit in this boundary case.


Author(s):  
Carsten Wiuf ◽  
Michael P.H Stumpf

In this paper, we discuss statistical families with the property that if the distribution of a random variable X is in , then so is the distribution of Z ∼Bi( X ,  p ) for 0≤ p ≤1. (Here we take Z ∼Bi( X ,  p ) to mean that given X = x ,  Z is a draw from the binomial distribution Bi( x ,  p ).) It is said that the family is closed under binomial subsampling. We characterize such families in terms of probability generating functions and for families with finite moments of all orders we give a necessary and sufficient condition for the family to be closed under binomial subsampling. The results are illustrated with power series and other examples, and related to examples from mathematical biology. Finally, some issues concerning inference are discussed.


2014 ◽  
Vol 46 (02) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating functionGand a maximum principle which, we prove, is satisfied by every fixed point ofG. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


2008 ◽  
Vol 254 (5) ◽  
pp. 1188-1216 ◽  
Author(s):  
Anders Pelander ◽  
Alexander Teplyaev

Sign in / Sign up

Export Citation Format

Share Document