branching law
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Kei Yuen Chan

Abstract We prove a local Gan–Gross–Prasad conjecture on predicting the branching law for the non-tempered representations of general linear groups in the case of non-Archimedean fields. We also generalize to Bessel and Fourier–Jacobi models and study a possible generalization to Ext-branching laws.


Author(s):  
Eyal Neuman ◽  
Xinghua Zheng

AbstractWe consider a branching random walk on $$\mathbb {Z}$$ Z started by n particles at the origin, where each particle disperses according to a mean-zero random walk with bounded support and reproduces with mean number of offspring $$1+\theta /n$$ 1 + θ / n . For $$t\ge 0$$ t ≥ 0 , we study $$M_{nt}$$ M nt , the rightmost position reached by the branching random walk up to generation [nt]. Under certain moment assumptions on the branching law, we prove that $$M_{nt}/\sqrt{n}$$ M nt / n converges weakly to the rightmost support point of the local time of the limiting super-Brownian motion. The convergence result establishes a sharp exponential decay of the tail distribution of $$M_{nt}$$ M nt . We also confirm that when $$\theta >0$$ θ > 0 , the support of the branching random walk grows in a linear speed that is identical to that of the limiting super-Brownian motion which was studied by Pinsky (Ann Probab 23(4):1748–1754, 1995). The rightmost position over all generations, $$M:=\sup _t M_{nt}$$ M : = sup t M nt , is also shown to converge weakly to that of the limiting super-Brownian motion, whose tail is found to decay like a Gumbel distribution when $$\theta <0$$ θ < 0 .


Author(s):  
Kei Yuen Chan

AbstractLet F be a non-Archimedean local field. This paper studies homological properties of irreducible smooth representations restricted from $${\mathrm {GL}}_{n+1}(F)$$ GL n + 1 ( F ) to $${\mathrm {GL}}_n(F)$$ GL n ( F ) . A main result shows that each Bernstein component of an irreducible smooth representation of $${\mathrm {GL}}_{n+1}(F)$$ GL n + 1 ( F ) restricted to $${\mathrm {GL}}_n(F)$$ GL n ( F ) is indecomposable. We also classify all irreducible representations which are projective when restricting from $${\mathrm {GL}}_{n+1}(F)$$ GL n + 1 ( F ) to $${\mathrm {GL}}_n(F)$$ GL n ( F ) . A main tool of our study is a notion of left and right derivatives, extending some previous work joint with Gordan Savin. As a by-product, we also determine the branching law in the opposite direction.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Patrick M. McGah ◽  
Massimo Capobianchi

This study reformulates Murray's well-known principle of minimum work as applied to the cardiovascular system to include the effects of the shear-thinning rheology of blood. The viscous behavior is described using the extended modified power law (EMPL), which is a time-independent, but shear-thinning rheological constitutive equation. The resulting minimization problem is solved numerically for typical parameter ranges. The non-Newtonian analysis still predicts the classical cubic diameter dependence of the volume flow rate and the cubic branching law. The current analysis also predicts a constant wall shear stress throughout the vascular tree, albeit with a numerical value about 15–25% higher than the Newtonian analysis. Thus, experimentally observed deviations from the cubic branching law or the predicted constant wall shear stress in the vasculature cannot likely be attributed to blood's shear-thinning behavior. Further differences between the predictions of the non-Newtonian and the Newtonian analyses are highlighted, and the limitations of the Newtonian analysis are discussed. Finally, the range and limits of applicability of the current results as applied to the human arterial tree are also discussed.


2014 ◽  
Vol 46 (2) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


2014 ◽  
Vol 46 (02) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating functionGand a maximum principle which, we prove, is satisfied by every fixed point ofG. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


2012 ◽  
Vol 49 (3) ◽  
pp. 652-670 ◽  
Author(s):  
Ming Fang

We study generalized branching random walks on the real line R that allow time dependence and local dependence between siblings. Specifically, starting from one particle at time 0, the system evolves such that each particle lives for one unit amount of time, gives birth independently to a random number of offspring according to some branching law, and dies. The offspring from a single particle are assumed to move to new locations on R according to some joint displacement distribution; the branching laws and displacement distributions depend on time. At time n, Fn(·) is used to denote the distribution function of the position of the rightmost particle in generation n. Under appropriate tail assumptions on the branching laws and offspring displacement distributions, we prove that Fn(· - Med(Fn)) is tight in n, where Med(Fn) is the median of Fn. The main part of the argument is to demonstrate the exponential decay of the right tail 1 - Fn(· - Med(Fn)).


Sign in / Sign up

Export Citation Format

Share Document