Boundary crossing probabilities for high-dimensional Brownian motion

2016 ◽  
Vol 53 (2) ◽  
pp. 543-553 ◽  
Author(s):  
James C. Fu ◽  
Tung-Lung Wu

Abstract The two-sided nonlinear boundary crossing probabilities for one-dimensional Brownian motion and related processes have been studied in Fu and Wu (2010) based on the finite Markov chain imbedding technique. It provides an efficient numerical method to computing the boundary crossing probabilities. In this paper we extend the above results for high-dimensional Brownian motion. In particular, we obtain the rate of convergence for high-dimensional boundary crossing probabilities. Numerical results are also provided to illustrate our results.


2010 ◽  
Vol 47 (4) ◽  
pp. 1058-1071 ◽  
Author(s):  
James C. Fu ◽  
Tung-Lung Wu

We propose a new method to obtain the boundary crossing probabilities or the first passage time distribution for linear and nonlinear boundaries for Brownian motion. The method also covers certain classes of stochastic processes associated with Brownian motion. The basic idea of the method is based on being able to construct a finite Markov chain, and the boundary crossing probability of Brownian motion is cast as the limiting probability of the finite Markov chain entering a set of absorbing states induced by the boundaries. Error bounds are obtained. Numerical results for various types of boundary studied in the literature are provided in order to illustrate our method.



2010 ◽  
Vol 47 (04) ◽  
pp. 1058-1071 ◽  
Author(s):  
James C. Fu ◽  
Tung-Lung Wu

We propose a new method to obtain the boundary crossing probabilities or the first passage time distribution for linear and nonlinear boundaries for Brownian motion. The method also covers certain classes of stochastic processes associated with Brownian motion. The basic idea of the method is based on being able to construct a finite Markov chain, and the boundary crossing probability of Brownian motion is cast as the limiting probability of the finite Markov chain entering a set of absorbing states induced by the boundaries. Error bounds are obtained. Numerical results for various types of boundary studied in the literature are provided in order to illustrate our method.



1999 ◽  
Vol 36 (4) ◽  
pp. 1019-1030 ◽  
Author(s):  
Alex Novikov ◽  
Volf Frishling ◽  
Nino Kordzakhia

Using the Girsanov transformation we derive estimates for the accuracy of piecewise approximations for one-sided and two-sided boundary crossing probabilities. We demonstrate that piecewise linear approximations can be calculated using repeated numerical integration. As an illustrative example we consider the case of one-sided and two-sided square-root boundaries for which we also present analytical representations in a form of infinite power series.



2012 ◽  
Vol 49 (01) ◽  
pp. 199-209 ◽  
Author(s):  
James C. Fu ◽  
Tung-Lung Wu ◽  
W.Y. Wendy Lou

The distributions for continuous, discrete, and conditional discrete scan statistics are studied. The approach of finite Markov chain imbedding, which has been applied to random permutations as well as to runs and patterns, is extended to compute the distribution of the conditional discrete scan statistic, defined from a sequence of Bernoulli trials. It is shown that the distribution of the continuous scan statistic induced by a Poisson process defined on (0, 1] is a limiting distribution of weighted distributions of conditional discrete scan statistics. Comparisons of rates of convergence as well as numerical comparisons of various bounds and approximations are provided to illustrate the theoretical results.



2001 ◽  
Vol 38 (2) ◽  
pp. 508-518 ◽  
Author(s):  
Demetrios L. Antzoulakos

Let Xn, n ≥ 1 be a sequence of trials taking values in a given set A, let ∊ be a pattern (simple or compound), and let Xr,∊ be a random variable denoting the waiting time for the rth occurrence of ∊. In the present article a finite Markov chain imbedding method is developed for the study of Xr,∊ in the case of the non-overlapping and overlapping way of counting runs and patterns. Several extensions and generalizations are also discussed.



2001 ◽  
Vol 38 (02) ◽  
pp. 508-518 ◽  
Author(s):  
Demetrios L. Antzoulakos

Let X n , n ≥ 1 be a sequence of trials taking values in a given set A, let ∊ be a pattern (simple or compound), and let X r,∊ be a random variable denoting the waiting time for the rth occurrence of ∊. In the present article a finite Markov chain imbedding method is developed for the study of X r,∊ in the case of the non-overlapping and overlapping way of counting runs and patterns. Several extensions and generalizations are also discussed.



Sign in / Sign up

Export Citation Format

Share Document