scholarly journals On the last exit times for spectrally negative Lévy processes

2017 ◽  
Vol 54 (2) ◽  
pp. 474-489 ◽  
Author(s):  
Yingqiu Li ◽  
Chuancun Yin ◽  
Xiaowen Zhou

Abstract Using a new approach, for spectrally negative Lévy processes we find joint Laplace transforms involving the last exit time (from a semiinfinite interval), the value of the process at the last exit time, and the associated occupation time, which generalize some previous results.

2019 ◽  
Vol 56 (2) ◽  
pp. 441-457 ◽  
Author(s):  
Bo Li ◽  
Nhat Linh Vu ◽  
Xiaowen Zhou

AbstractFor spectrally negative Lévy processes, we prove several fluctuation results involving a general draw-down time, which is a downward exit time from a dynamic level that depends on the running maximum of the process. In particular, we find expressions of the Laplace transforms for the two-sided exit problems involving the draw-down time. We also find the Laplace transforms for the hitting time and creeping time over the running-maximum related draw-down level, respectively, and obtain an expression for a draw-down associated potential measure. The results are expressed in terms of scale functions for the spectrally negative Lévy processes.


1998 ◽  
Vol 149 ◽  
pp. 19-32 ◽  
Author(s):  
Kouji Yamamuro

Abstract.For Hunt processes on Rd, strong and weak transience is defined by finiteness and infiniteness, respectively, of the expected last exit times from closed balls. Under some condition, which is satisfied by Lévy processes and Ornstein-Uhlenbeck type processes, this definition is expressed in terms of the transition probabilities. A criterion is given for strong and weak transience of Ornstein-Uhlenbeck type processes on Rd, using their Lévy measures and coefficient matrices of linear drift terms. An example is discussed.


2018 ◽  
Vol 128 (1) ◽  
pp. 306-331 ◽  
Author(s):  
José-Luis Pérez ◽  
Kazutoshi Yamazaki

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Luciano Abadias ◽  
Pedro J. Miana

We obtain a vector-valued subordination principle forgα,gβ-regularized resolvent families which unified and improves various previous results in the literature. As a consequence, we establish new relations between solutions of different fractional Cauchy problems. To do that, we consider scaled Wright functions which are related to Mittag-Leffler functions, the fractional calculus, and stable Lévy processes. We study some interesting properties of these functions such as subordination (in the sense of Bochner), convolution properties, and their Laplace transforms. Finally we present some examples where we apply these results.


Sign in / Sign up

Export Citation Format

Share Document