scholarly journals Subcritical Sevastyanov branching processes with nonhomogeneous Poisson immigration

2017 ◽  
Vol 54 (2) ◽  
pp. 569-587 ◽  
Author(s):  
Ollivier Hyrien ◽  
Kosto V. Mitov ◽  
Nikolay M. Yanev

Abstract We consider a class of Sevastyanov branching processes with nonhomogeneous Poisson immigration. These processes relax the assumption required by the Bellman–Harris process which imposes the lifespan and offspring of each individual to be independent. They find applications in studies of the dynamics of cell populations. In this paper we focus on the subcritical case and examine asymptotic properties of the process. We establish limit theorems, which generalize classical results due to Sevastyanov and others. Our key findings include a novel law of large numbers and a central limit theorem which emerge from the nonhomogeneity of the immigration process.

2016 ◽  
Vol 53 (1) ◽  
pp. 307-314 ◽  
Author(s):  
Zhenlong Gao ◽  
Yanhua Zhang

Abstract Let {Zn, n = 0, 1, 2, . . .} be a supercritical branching process, {Nt, t ≥ 0} be a Poisson process independent of {Zn, n = 0, 1, 2, . . .}, then {ZNt, t ≥ 0} is a supercritical Poisson random indexed branching process. We show a law of large numbers, central limit theorem, and large and moderate deviation principles for log ZNt.


2020 ◽  
Vol 52 (4) ◽  
pp. 1127-1163
Author(s):  
Jie Yen Fan ◽  
Kais Hamza ◽  
Peter Jagers ◽  
Fima C. Klebaner

AbstractA general multi-type population model is considered, where individuals live and reproduce according to their age and type, but also under the influence of the size and composition of the entire population. We describe the dynamics of the population as a measure-valued process and obtain its asymptotics as the population grows with the environmental carrying capacity. Thus, a deterministic approximation is given, in the form of a law of large numbers, as well as a central limit theorem. This general framework is then adapted to model sexual reproduction, with a special section on serial monogamic mating systems.


2018 ◽  
Vol 50 (A) ◽  
pp. 177-190
Author(s):  
Götz Kersting ◽  
Anton Wakolbinger

Abstract We present a law of large numbers and a central limit theorem for the time to absorption of Λ-coalescents with dust started from n blocks, as n→∞. The proofs rely on an approximation of the logarithm of the block-counting process by means of a drifted subordinator.


2019 ◽  
Vol 51 (03) ◽  
pp. 667-716
Author(s):  
Riccardo Passeggeri ◽  
Almut E. D. Veraart

AbstractIn this paper we introduce the multivariate Brownian semistationary (BSS) process and study the joint asymptotic behaviour of its realised covariation using in-fill asymptotics. First, we present a central limit theorem for general multivariate Gaussian processes with stationary increments, which are not necessarily semimartingales. Then, we show weak laws of large numbers, central limit theorems, and feasible results for BSS processes. An explicit example based on the so-called gamma kernels is also provided.


1981 ◽  
Vol 30 (4) ◽  
pp. 786-791
Author(s):  
V. M. Kruglov

1974 ◽  
Vol 11 (3) ◽  
pp. 582-587 ◽  
Author(s):  
G. L. O'Brien

Chain-dependent processes, also called sequences of random variables defined on a Markov chain, are shown to satisfy the strong law of large numbers. A central limit theorem and a law of the iterated logarithm are given for the case when the underlying Markov chain satisfies Doeblin's hypothesis. The proofs are obtained by showing independence of the initial distribution of the chain and by then restricting attention to the stationary case.


2006 ◽  
Vol 06 (03) ◽  
pp. 355-371
Author(s):  
BERNARD BERCU ◽  
CLÉMENTINE PRIEUR

We investigate the spectral asymptotic properties of the stationary dynamical system ξt= φ(Tt(X0)). This process is given by the iterations of a piecewise expanding map T of the interval [0,1], invariant for an ergodic probability μ. The initial state X0is distributed over [0,1] according to μ and φ is a function taking values in ℝ. We establish a strong law of large numbers and a central limit theorem for the integrated periodogram as well as for Fourier transforms associated with (ξt: t ∈ ℕ). Several examples of expanding maps T are also provided.


Sign in / Sign up

Export Citation Format

Share Document