microwave background radiation
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 29)

H-INDEX

44
(FIVE YEARS 2)

Author(s):  
Ryotaro Ishikawa ◽  
Sergei V Ketov

Abstract We study the parameter space of the effective (with two scalars) models of cosmological inflation and primordial black hole (PBH) formation in the modified (R+ R 2) supergravity. Our models describe double inflation, whose first stage is driven by Starobinsky’s scalaron coming from the R 2 gravity, and whose second stage is driven by another scalar belonging to the supergravity multiplet. The ultra-slow-roll regime between the two stages leads a large peak (enhancement) in the power spectrum of scalar perturbations, which results in efficient PBH formation. Both inflation and PBH formation are generic in our models, while those PBH can account for a significant part or the whole of dark matter. Some of the earlier proposed models in the same class are in tension (over 3σ) with the observed value of the scalar tilt ns , so that we study more general models with more parameters, and investigate the dependence of the cosmological tilts (ns,r) and the scalar power spectrum enhancement upon the parameters. The PBH masses and their density fraction (as part of dark matter) are also calculated. A good agreement (between 2σ and 3σ) with the observed value of ns requires fine tuning of the parameters, and it is only realized in the so-called δ-models. Our models offer the (super)gravitational origin of inflation, PBH and dark matter together, and may be confirmed or falsified by future precision measurements of the cosmic microwave background radiation and PBH-induced gravitational waves.


2021 ◽  
Vol 3 (6) ◽  
pp. 1-6
Author(s):  
V. M. Svishch

The features of reference frame, concomitant to the cosmic microwave background, immobile relatively cosmic microwave background, are considered. It is shown that the features of reference frame, concomitant to the cosmic microwave background (CMB), are determined by its properties. Any other object in the Universe and reference frame concomitant to it, is immersed in the CMB and moves relative to the reference frame concomitant to microwave background radiation. The zero pecular velocity of the reference frame concomitant to the microwave background radiation is analogous to the zero temperature on the Kelvin scale. Time in it is most rapid in relation to the time in any other reference frame, observable and measurable in any of them. The features of time, pecular speed, relative speed of two inertial RF, stellar aberration, and Doppler effect in the reference frame concomitant to the microwave background radiation are considered. According to the determined relative velocity of the two reference systems and the peculiar velocity of the reference system with the observer, the components of their relative velocity are determined. Determining the components of the relative velocity of the reference frames with determining the synchronous time for all points at any time in the reference frame concomitant to microwave background radiation, allows us to investigate the possibility of determining the speed of light "one way" and using it to navigate vehicles in distant space. Stability of angular location of heterogeneities of CMB in reference frame concomitant to CMB, allows us to use these heterogeneities for the increase of exactness of astronomic reference frames HCRF and ICRF.


Author(s):  
Ting-Hang Pei

In this research, the other reasonable explanations for the cosmic microwave background radiation is revealed. Due to the microwave resolution, it very roughly shows the image of galaxies in the universe. Moreover, the intensity measurement on each pixel of the image is the sum of the incident microwaves from different directions, so the microwave image cannot represent the microwave sources clearly far away from the Earth. Hence, we propose a simulation after removing several strongest microwave sources, the remaining microwave radiation sources can establish a very uniform intensity distribution over a range of several ten light years. On the other hand, Sloan Digital Sky Survey reveals 200 million galaxies in the universe and, in fact, only to eliminate the contributions of all galaxies from the microwave image is impossible. The way to further obtain the fine-scale structure by only removing the few strongest microwave sources as the foreground effect will keep the other contributions from all the rest galaxies and stars. Therefore, the Cosmic Microwave Background cannot be uniquely explained the radiation which was left after the initial formation of the universe. Moreover, it is the mainly residual radiation from the un-calculated galaxies and inaccurate estimation of the microwave source strength.


Author(s):  
Shubham Kala ◽  
Hemwati Nandan ◽  
Prateek Sharma ◽  
Maye Elmardi

Various observations from cosmic microwave background radiation (CMBR), type Ia supernova and baryon acoustic oscillations (BAO) are strongly suggestive of an accelerated expansion of the universe which can be explained by the presence of mysterious energy known as dark energy. The quintessential matter coupled with gravity minimally is considered one of the possible candidates to represent the presence of such dark energy in our universe. In view of this scenario, we study the geodesic of massless particles as well as massive particles around a (2 + 1)-dimensional BTZ black hole (BH) spacetime surrounded by the quintessence. The effect of parameters involved in the deflection of light by such a BH spacetime is investigated in detail. The results obtained are then compared with a usual non-rotating BTZ BH spacetime.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 358
Author(s):  
John W. Moffat ◽  
Viktor Toth

The recent data release by the Planck satellite collaboration presents a renewed challenge for modified theories of gravitation. Such theories must be capable of reproducing the observed angular power spectrum of the cosmic microwave background radiation. For modified theories of gravity, an added challenge lies in the fact that standard computational tools do not readily accommodate the features of a theory with a variable gravitational coupling coefficient. An alternative is to use less accurate but more easily modifiable semianalytical approximations to reproduce at least the qualitative features of the angular power spectrum. We extend a calculation that was used previously to demonstrate compatibility between the Scalar–Tensor–Vector–Gravity (STVG) theory, also known by the acronym MOG, and data from the Wilkinson Microwave Anisotropy Probe (WMAP) to show the consistency between the theory and the newly released Planck 2018 data. We find that within the limits of this approximation, the theory accurately reproduces the features of the angular power spectrum.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 319
Author(s):  
Rishi Kumar Tiwari ◽  
Aroonkumar Beesham ◽  
Bhupendra Kumar Shukla

Although the standard lambda cold dark matter cosmological model is quite successful in describing the universe, there are still several issues that are still not resolved. Some of these are the cosmological constant problem, certain anomalies in the cosmic microwave background radiation and whether general relativity is valid on large scales. Therefore, it is interesting to examine modified theories in an attempt to solve these problems, and to examine the entire range of possibilities that are allowed. In this work, we examine one of these modified theories, viz., f(R,T) gravity. We study the homogeneous and isotropic models in this theory, which have some pleasing features, such as no initial singularity, a dynamic cosmological term, and a transition from early deceleration to late-time acceleration as intimated by observations. The physical parameters of the model, as well as the energy conditions, are discussed and a viable cosmological model can be constructed.


Author(s):  
Kalimuthu S

Einstein’s special and general relativity revolutionized physics. The predictions of general relativity are Strong Lensing, Weak Lensing, Microlensing, Black Holes, Relativistic Jets, A Gravitational Vortex, Gravitational Waves, The Sun Delaying Radio Signals, Proof from Orbiting Earth, Expansion of the universe. The density of the universe determines the geometry and fate of the universe. According to Freedman’s equations of general relativity published in 1922 and 1924, the geometry of the universe may be closed, open and flat. It all depends upon the curvature of the universe also. Various results of Cosmic Microwave Background Radiation (CMBR), NASA’s Wilkinson Microwave Anisotropy Probe (WMAP), and ESA’s Planck spacecraft probes found that our universe is flat within a margin of 0.4% error. In this short work, by applying the laws of quadratic equations, we attempt to show that OUR UNIVERSE IS FLAT.


2021 ◽  
Vol 36 (08n09) ◽  
pp. 2130006
Author(s):  
Alberto Salvio

We review (and extend) the analysis of general theories of all interactions (gravity included) where the mass scales are due to dimensional transmutation. Quantum consistency requires the presence of terms in the action with four derivatives of the metric. It is shown, nevertheless, how unitary is achieved and the classical Ostrogradsky instabilities can be avoided. The four-derivative terms also allow us to have a UV complete framework and a naturally small ratio between the Higgs mass and the Planck scale. Moreover, black holes of Einstein gravity with horizons smaller than a certain (microscopic) scale are replaced by horizonless ultracompact objects that are free from any singularity and have interesting phenomenological applications. We also discuss the predictions that can be compared with observations of the microwave background radiation anisotropies and find that this scenario is viable and can be tested with future data. Finally, how strong phase transitions can emerge in models of this type with approximate scale symmetry and how to test them with GW detectors is reviewed and explained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koustav Konar ◽  
Kingshuk Bose ◽  
R. K. Paul

AbstractBlackbody radiation inversion is a mathematical process for the determination of probability distribution of temperature from measured radiated power spectrum. In this paper a simple and stable blackbody radiation inversion is achieved by using an analytical function with three determinable parameters for temperature distribution. This inversion technique is used to invert the blackbody radiation field of the cosmic microwave background, the remnant radiation of the hot big bang, to infer the temperature distribution of the generating medium. The salient features of this distribution are investigated and analysis of this distribution predicts the presence of distortion in the cosmic microwave background spectrum.


Sign in / Sign up

Export Citation Format

Share Document