scholarly journals Variations of the elephant random walk

2021 ◽  
Vol 58 (3) ◽  
pp. 805-829
Author(s):  
Allan Gut ◽  
Ulrich Stadtmüller

AbstractIn the classical simple random walk the steps are independent, that is, the walker has no memory. In contrast, in the elephant random walk, which was introduced by Schütz and Trimper [19] in 2004, the next step always depends on the whole path so far. Our main aim is to prove analogous results when the elephant has only a restricted memory, for example remembering only the most remote step(s), the most recent step(s), or both. We also extend the models to cover more general step sizes.

1976 ◽  
Vol 13 (02) ◽  
pp. 355-356 ◽  
Author(s):  
Aidan Sudbury

Particles are situated on a rectangular lattice and proceed to invade each other's territory. When they are equally competitive this creates larger and larger blocks of one type as time goes by. It is shown that the expected size of such blocks is equal to the expected range of a simple random walk.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2021 ◽  
Author(s):  
Thi Thi Zin ◽  
Pyke Tin ◽  
Pann Thinzar Seint ◽  
Kosuke Sumi ◽  
Ikuo Kobayashi ◽  
...  

2010 ◽  
Vol 149 (2) ◽  
pp. 351-372
Author(s):  
WOUTER KAGER ◽  
LIONEL LEVINE

AbstractInternal diffusion-limited aggregation is a growth model based on random walk in ℤd. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in ℤ2 for which the limiting shape is a diamond. Certain of these walks—those with a directional bias toward the origin—have at most logarithmic fluctuations around the limiting shape. This contrasts with the simple random walk, where the limiting shape is a disk and the best known bound on the fluctuations, due to Lawler, is a power law. Our walks enjoy a uniform layering property which simplifies many of the proofs.


1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.


10.37236/3398 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Natasha Komarov ◽  
Peter Winkler

We show that the expected time for a smart "cop"' to catch a drunk "robber" on an $n$-vertex graph is at most $n + {\rm o}(n)$. More precisely, let $G$ be a simple, connected, undirected graph with distinguished points $u$ and $v$ among its $n$ vertices. A cop begins at $u$ and a robber at $v$; they move alternately from vertex to adjacent vertex. The robber moves randomly, according to a simple random walk on $G$; the cop sees all and moves as she wishes, with the object of "capturing" the robber—that is, occupying the same vertex—in least expected time. We show that the cop succeeds in expected time no more than $n {+} {\rm o}(n)$. Since there are graphs in which capture time is at least $n {-} o(n)$, this is roughly best possible. We note also that no function of the diameter can be a bound on capture time.


Sign in / Sign up

Export Citation Format

Share Document