scholarly journals Estimating tails of independently stopped random walks using concave approximations of hazard functions

2021 ◽  
Vol 58 (3) ◽  
pp. 773-793
Author(s):  
Jaakko Lehtomaa

AbstractThis paper considers logarithmic asymptotics of tails of randomly stopped sums. The stopping is assumed to be independent of the underlying random walk. First, finiteness of ordinary moments is revisited. Then the study is expanded to more general asymptotic analysis. Results are applicable to a large class of heavy-tailed random variables. The main result enables one to identify if the asymptotic behaviour of a stopped sum is dominated by its increments or the stopping variable. As a consequence, new sufficient conditions for the moment determinacy of compounded sums are obtained.

1972 ◽  
Vol 9 (01) ◽  
pp. 87-102 ◽  
Author(s):  
Joseph Tomko

The paper deals with the asymptotic analysis of waiting time distribution for service systems with finite queue capacity. First an M/M/m system is considered and the rate of approximation is given. Then the case of the M/G/1 system is studied for traffic intensity ρ > 1. In the last section a condition is given under which an estimate can be derived for the remainder term in central limit theorems for randomly stopped sums.


1972 ◽  
Vol 9 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Joseph Tomko

The paper deals with the asymptotic analysis of waiting time distribution for service systems with finite queue capacity. First an M/M/m system is considered and the rate of approximation is given. Then the case of the M/G/1 system is studied for traffic intensity ρ > 1. In the last section a condition is given under which an estimate can be derived for the remainder term in central limit theorems for randomly stopped sums.


Author(s):  
Jiandong Zhao ◽  
Tonghua Zhang ◽  
Zhixia Han

AbstractTo study the effect of environmental noise on the spread of the disease, a stochastic Susceptible, Infective, Removed and Susceptible (SIRS) model with two viruses is introduced in this paper. Sufficient conditions for global existence of positive solution and stochastically asymptotic stability of disease-free equilibrium in the model are given. Then, it is shown that the positive solution is stochastically ultimately bounded and the moment average in time of the positive solution is bounded. Our results mean that the environmental noise suppresses the growth rate of the individuals and drives the disease to extinction under certain conditions. Finally, numerical simulations are given to illustrate our main results.


2018 ◽  
Vol 28 (5) ◽  
pp. 2966-3001 ◽  
Author(s):  
Alexandros Beskos ◽  
Gareth Roberts ◽  
Alexandre Thiery ◽  
Natesh Pillai

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.


2011 ◽  
Vol 43 (3) ◽  
pp. 782-813 ◽  
Author(s):  
M. Jara ◽  
T. Komorowski

In this paper we consider the scaled limit of a continuous-time random walk (CTRW) based on a Markov chain {Xn,n≥ 0} and two observables, τ(∙) andV(∙), corresponding to the renewal times and jump sizes. Assuming that these observables belong to the domains of attraction of some stable laws, we give sufficient conditions on the chain that guarantee the existence of the scaled limits for CTRWs. An application of the results to a process that arises in quantum transport theory is provided. The results obtained in this paper generalize earlier results contained in Becker-Kern, Meerschaert and Scheffler (2004) and Meerschaert and Scheffler (2008), and the recent results of Henry and Straka (2011) and Jurlewicz, Kern, Meerschaert and Scheffler (2010), where {Xn,n≥ 0} is a sequence of independent and identically distributed random variables.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1431
Author(s):  
Gaia Pozzoli ◽  
Mattia Radice ◽  
Manuele Onofri ◽  
Roberto Artuso

We consider a continuous-time random walk which is the generalization, by means of the introduction of waiting periods on sites, of the one-dimensional non-homogeneous random walk with a position-dependent drift known in the mathematical literature as Gillis random walk. This modified stochastic process allows to significantly change local, non-local and transport properties in the presence of heavy-tailed waiting-time distributions lacking the first moment: we provide here exact results concerning hitting times, first-time events, survival probabilities, occupation times, the moments spectrum and the statistics of records. Specifically, normal diffusion gives way to subdiffusion and we are witnessing the breaking of ergodicity. Furthermore we also test our theoretical predictions with numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document