normal diffusion
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 32)

H-INDEX

19
(FIVE YEARS 4)

Author(s):  
Trifce Sandev ◽  
Viktor Domazetoski ◽  
Ljupco Kocarev ◽  
Ralf Metzler ◽  
Alexei Chechkin

Abstract We study a heterogeneous diffusion process with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyze the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like $t^{1⁄2}$ while the length scale ξ(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the heterogeneous diffusion process with diffusion length increasing like $t^{p⁄2}$ the length scale ξ(t) grows like $t^{p}$. The obtained results are verified by numerical solutions of the corresponding Langevin equation.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 79
Author(s):  
Jiaxin Wu ◽  
Fuchen Guo ◽  
Ke Li ◽  
Linxi Zhang

The sliding dynamics along two asymmetric/symmetric axial chains of ring chains linked by a linear chainis investigated using molecular dynamics (MD) simulations. A novel sub-diffusion behavior is observed for ring chains sliding along eithera fixed rod-like chain or fluctuating axial chain on asymmetric/symmetric axial chainsat the intermediate time range due to their strongly interplay between two ring chains. However, two ring chains slide in the normal diffusion at along time range because their sliding dynamics can be regarded as an overall motion of two ring chains. For ring chains sliding on two symmetric/asymmetricaxial chains, the diffusion coefficient D of ring chains relies on the bending energy of axial chains (Kb) as well as the distance of two axial chains (d). There exists a maximum diffusion coefficient Dmax at d = d* in which ring chains slide at the fastest velocity due to the maximum conformational entropy for the linking chain between two ring chainsat d = d*. Ring chain slide on fixed rod-like axial chainsfaster in the symmetric axial chain case than that in the asymmetric axial chain case. However, ring chains slide on fluctuatingaxial chainsslower in the symmetric axial chain case than that in the asymmetric axial chain case. This investigation can provide insights into the effects of the linked chain conformation on the sliding dynamics of ring chains in a slide-ring gel.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3404
Author(s):  
Elżbieta Rutkowska ◽  
Iwona Kwiecień ◽  
Joanna Bednarek ◽  
Rafał Sokołowski ◽  
Agata Raniszewska ◽  
...  

Sarcoidosis (SA) is a systemic granulomatous disorder of unknown etiology with lung and mediastinal lymph nodes (LNs) as the main location. T lymphocytes play important role in the formation of granulomas in SA, but still little is known about the role of maturation profile in the development of inflammatory changes. The aim of this study was to determine the CD4+ and CD8+ T cells maturation profile in LNs and in peripheral blood (PB) and its relation to disease severity expressed by diffusing capacity of the lung for carbon monoxide (DLCO). 29 patients with newly pulmonary SA were studied. Flow cytometry was used for cells evaluation in EBUS-TBNA samples. We observed lower median proportion of T lymphocytes, CD4+ T and CD8+ T cells in patients with DLCO< 80% than in patients with normal diffusion (DLCO > 80%). Patients with DLCO < 80% had lower median proportion of effector and higher median proportion of central memory CD4+ and CD8+ T cells than patients with DLCO > 80%. We reported for the first time that LNs CD4+ and CD8+ T cells maturation differs depending on the DLCO value in sarcoidosis. Lymphocytes profiles in LNs may reflect the immune status of patients with SA and can be analysed by flow cytometry of EBUS-TBNA samples.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Thomas Guérin ◽  
Maxim Dolgushev ◽  
Olivier Bénichou ◽  
Raphaël Voituriez

AbstractChemical reactions generically require that particles come into contact. In practice, reaction is often imperfect and can necessitate multiple random encounters between reactants. In confined geometries, despite notable recent advances, there is to date no general analytical treatment of such imperfect transport-limited reaction kinetics. Here, we determine the kinetics of imperfect reactions in confining domains for any diffusive or anomalously diffusive Markovian transport process, and for different models of imperfect reactivity. We show that the full distribution of reaction times is obtained in the large confining volume limit from the knowledge of the mean reaction time only, which we determine explicitly. This distribution for imperfect reactions is found to be identical to that of perfect reactions upon an appropriate rescaling of parameters, which highlights the robustness of our results. Strikingly, this holds true even in the regime of low reactivity where the mean reaction time is independent of the transport process, and can lead to large fluctuations of the reaction time - even in simple reaction schemes. We illustrate our results for normal diffusion in domains of generic shape, and for anomalous diffusion in complex environments, where our predictions are confirmed by numerical simulations.


Author(s):  
Òscar Garibo i Orts ◽  
Alba Baeza-Bosca ◽  
Miguel A. García-March ◽  
J. Alberto Conejero

Abstract Anomalous diffusion occurs at very different scales in nature, from atomic systems to motions in cell organelles, biological tissues or ecology, and also in artificial materials, such as cement. Being able to accurately measure the anomalous exponent associated to a given particle trajectory, thus determining whether the particle subdiffuses, superdiffuses or performs normal diffusion, is of key importance to understand the diffusion process. Also it is often important to trustingly identify the model behind the trajectory, as it this gives a large amount of information on the system dynamics. Both aspects are particularly difficult when the input data are short and noisy trajectories. It is even more difficult if one cannot guarantee that the trajectories output in experiments are homogeneous, hindering the statistical methods based on ensembles of trajectories. We present a data-driven method able to infer the anomalous exponent and to identify the type of anomalous diffusion process behind single, noisy and short trajectories, with good accuracy. This model was used in our participation in the Anomalous Diffusion (AnDi) Challenge. A combination of convolutional and recurrent neural networks was used to achieve state-of-the-art results when compared to methods participating in the AnDi Challenge, ranking top 4 in both classification and diffusion exponent regression.


2021 ◽  
Vol 1771 ◽  
pp. 147646
Author(s):  
Donald Thevalingam ◽  
Aditi A. Naik ◽  
Jan Hrabe ◽  
Dan P. McCloskey ◽  
Sabina Hrabĕtová

2021 ◽  
Vol 2015 (1) ◽  
pp. 012103
Author(s):  
A A Kurilovich ◽  
V N Mantsevich ◽  
K J Stevenson ◽  
A V Chechkin ◽  
V V Palyulin

Abstract We present a diffusion-based simulation model for explanation of long time power-law decay of photoluminescence (PL) emission intensity in semiconductor nanoplatelets. In our model the shape of emission curves is an outcome of interplay of recombination, diffusion and trapping of excitons. At short times the excitons diffuse freely following the normal diffusion behaviour. The emission decay is purely exponential and is defined by recombination. At long times the transition into the subdiffusive motion happens and the emission occurs due to the release of excitons from surface traps. A power-law tail for intensity is a consequence of the release. The crossover from onelimit to another is controlled by diffusion properties. The approach reproduces the properties of experimental curves measured for different nanoplatelet systems.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2669
Author(s):  
Maomei Wang ◽  
Longcang Shu ◽  
Gang Zhao ◽  
Yuzhu Lin ◽  
Zhipeng Li ◽  
...  

During the implementation of the riprap project, the underwater migration process of the stones is quite uncertain because of its difficulty to observe. The process of stone transportation is discrete, which makes it unsuitable to be described by a continuous differential equation. Therefore, considering the distribution of stone jumping and waiting, a continuous-time random walk (CTRW) model is established. Based on the actual engineering data, five schemes simulate the one-dimensional motion of riprap underwater and further discuss the spatial distribution and particle size of the riprap. The results show that the CTRW model can effectively predict the riverbed elevation change behavior caused by the riprap project. The suitability of the model for the prediction of riprap movement decreases first and then increases with the increase in the selected width. This indicates that the randomness of the motion of the riprap causes the width of the observation zone to have a significant effect on the overall behavior of riprap movement. When the width is large enough, the influence of the randomness of the motion can be reduced by the average movement behavior within the observation zone. While the observation time of riprap movement is from a short to long time scale, the transport behavior changes from subdiffusion to normal diffusion behavior.


2021 ◽  
Vol 10 (12) ◽  
pp. e403101220595
Author(s):  
Levi Rodrigues Leite ◽  
Jorge Luiz Bezerra de Araújo ◽  
Leandro Jader Pitombeira Xavier ◽  
Vagner Henrique Loiola Bessa ◽  
João Cláudio Nunes Carvalho ◽  
...  

Diffusive properties of colloidal crystals in a quasi-one-dimensional channel are studied using numerical simulations. In order to study the influence of the attractive interaction between particles, it was introduced as an artificial dimensionless parameter β in the attractive term of the interaction potential. Changing the value of β, we can tune the effect of attraction between particles. We show that charged particles can change their mobility and the diffusion exponent of a one-chain like system. Variation on exponent diffusion can be induced by tuning the attractive part of interaction potential, making possible the existence of diffusive regimes between single-file diffusion (SFD) and normal diffusion, without changing confinement strength. System stoichiometry was changed, imposing particles in different arrangements in small clusters, which varies the diffusive behaviour. If stoichiometry is different from 1:1, it is possible to have particles with equal charges but with different mobilities. Another important observation is that mean-square displacement (MSD) for different charges is different for different values.


Sign in / Sign up

Export Citation Format

Share Document