scholarly journals ON EQUIVALENCE RELATIONS GENERATED BY SCHAUDER BASES

2017 ◽  
Vol 82 (4) ◽  
pp. 1459-1481
Author(s):  
LONGYUN DING

AbstractIn this article, a notion of Schauder equivalence relation ℝℕ/L is introduced, where L is a linear subspace of ℝℕ and the unit vectors form a Schauder basis of L. The main theorem is to show that the following conditions are equivalent:(1) the unit vector basis is boundedly complete;(2) L is a Fσ in ℝℕ;(3) ℝℕ/L is Borel reducible to ℓ∞.We show that any Schauder equivalence relation generalized by a basis of ℓ2 is Borel bireducible to ℝℕ/ℓ2 itself, but it is not true for bases of c0 or ℓ1. Furthermore, among all Schauder equivalence relations generated by sequences in c0, we find the minimum and the maximum elements with respect to Borel reducibility.

1978 ◽  
Vol 29 (4) ◽  
pp. 389-392
Author(s):  
Alfred D. Andrew ◽  
Stephen Demko

1975 ◽  
Vol 20 (3-4) ◽  
pp. 216-227 ◽  
Author(s):  
A. Szankowski ◽  
M. Zippin

2005 ◽  
Vol 70 (3) ◽  
pp. 979-992 ◽  
Author(s):  
Greg Hjorth

This note answers a questions from [2] by showing that considered up to Borel reducibility, there are more essentially countable Borel equivalence relations than countable Borel equivalence relations. Namely:Theorem 0.1. There is an essentially countable Borel equivalence relation E such that for no countable Borel equivalence relation F (on a standard Borel space) do we haveThe proof of the result is short. It does however require an extensive rear guard campaign to extract from the techniques of [1] the followingMessy Fact 0.2. There are countable Borel equivalence relationssuch that:(i) eachExis defined on a standard Borel probability space (Xx, μx); each Ex is μx-invariant and μx-ergodic;(ii) forx1 ≠ x2 and A μxι -conull, we haveExι/Anot Borel reducible toEx2;(iii) if f: Xx → Xxis a measurable reduction ofExto itself then(iv)is a standard Borel space on which the projection functionis Borel and the equivalence relation Ê given byif and only ifx = x′ andzExz′ is Borel;(V)is Borel.We first prove the theorem granted this messy fact. We then prove the fact.(iv) and (v) are messy and unpleasant to state precisely, but are intended to express the idea that we have an effective parameterization of countable Borel equivalence relations by points in a standard Borel space. Examples along these lines appear already in the Adams-Kechris constructions; the new feature is (iii).Simon Thomas has pointed out to me that in light of theorem 4.4 [5] the Gefter-Golodets examples of section 5 [5] also satisfy the conclusion of 0.2.


1996 ◽  
Vol 48 (3) ◽  
pp. 625-640 ◽  
Author(s):  
Narcisse Randrianantoanina

AbstractLet X be a Banach space and (fn)n be a bounded sequence in L1(X). We prove a complemented version of the celebrated Talagrand's dichotomy, i.e., we show that if (en)n denotes the unit vector basis of c0, there exists a sequence gn ∈ conv(fn, fn+1,...) such that for almost every ω, either the sequence (gn(ω) ⊗ en) is weakly Cauchy in or it is equivalent to the unit vector basis of ℓ1. We then get a criterion for a bounded sequence to contain a subsequence equivalent to a complemented copy of ℓ1 in L1(X). As an application, we show that for a Banach space X, the space L1(X) has Pełczyńiski's property (V*) if and only if X does.


2005 ◽  
Vol 70 (4) ◽  
pp. 1325-1340 ◽  
Author(s):  
Christian Rosendal

AbstractFamilies of Borel equivalence relations and quasiorders that are cofinal with respect to the Borel reducibility ordering. ≤B, are constructed. There is an analytic ideal on ω generating a complete analytic equivalence relation and any Borel equivalence relation reduces to one generated by a Borel ideal. Several Borel equivalence relations, among them Lipschitz isomorphism of compact metric spaces, are shown to be Kσ complete.


2009 ◽  
Vol 2009 ◽  
pp. 1-7
Author(s):  
F. Albiac ◽  
C. Leránoz

For0<p<∞the unit vector basis ofℓphas the property of perfect homogeneity: it is equivalent to all its normalized block basic sequences, that is, perfectly homogeneous bases are a special case of symmetric bases. For Banach spaces, a classical result of Zippin (1966) proved that perfectly homogeneous bases are equivalent to either the canonicalc0-basis or the canonicalℓp-basis for some1≤p<∞. In this note, we show that (a relaxed form of) perfect homogeneity characterizes the unit vector bases ofℓpfor0<p<1as well amongst bases in nonlocally convex quasi-Banach spaces.


2011 ◽  
Vol 76 (1) ◽  
pp. 243-266 ◽  
Author(s):  
Sy-David Friedman ◽  
Luca Motto Ros

AbstractLouveau and Rosendal [5] have shown that the relation of bi-embeddability for countable graphs as well as for many other natural classes of countable structures is complete under Borel reducibility for analytic equivalence relations. This is in strong contrast to the case of the isomorphism relation, which as an equivalence relation on graphs (or on any class of countable structures consisting of the models of a sentence of ) is far from complete (see [5, 2]).In this article we strengthen the results of [5] by showing that not only does bi-embeddability give rise to analytic equivalence relations which are complete under Borel reducibility, but in fact any analytic equivalence relation is Borel equivalent to such a relation. This result and the techniques introduced answer questions raised in [5] about the comparison between isomorphism and bi-embeddability. Finally, as in [5] our results apply not only to classes of countable structures defined by sentences of , but also to discrete metric or ultrametric Polish spaces, compact metrizable topological spaces and separable Banach spaces, with various notions of embeddability appropriate for these classes, as well as to actions of Polish monoids.


1975 ◽  
Vol 18 (1) ◽  
pp. 137-140 ◽  
Author(s):  
P. G. Casazza ◽  
Bor-Luh Lin

A bounded basis {xn} of a Banach space X is called perfectly homogeneous if every bounded block basic sequence {yn} of {xn} is equivalent to {xn}. By a result of M. Zippin [4], a basis in a Banach space is perfectly homogeneous if and only if it is equivalent to the unit vector basis of c0 or lp, 1 ≤ p < + ∞. A basis {xn} of a Banach space X is called symmetric, if every permutation {xσ(n)} of {xn} is a basis of X, equivalent to the basis {xn}. It is clear that every perfectly homogeneous basis is symmetric.


Sign in / Sign up

Export Citation Format

Share Document