scholarly journals Dynamically formed black hole binaries: In-cluster versus ejected mergers

Author(s):  
O. Anagnostou ◽  
M. Trenti ◽  
A. Melatos

Abstract The growing number of black hole binary (BHB) mergers detected by the Laser Interferometer Gravitational-Wave Observatory have the potential to enable an unprecedented characterisation of the physical processes and astrophysical conditions that govern the formation of compact binaries. In this paper, we focus on investigating the dynamical formation of BHBs in dense star clusters through a state-of-the-art set of 58 direct N-body simulations with N $\leqslant200\,000$ particles which include stellar evolution, gravitational braking, orbital decay through gravitational radiation, and galactic tidal interactions. The simulations encompass a range of initial conditions representing typical young globular clusters, including the presence of primordial binaries. The systems are simulated for $\sim 12$ Gyr. The dataset yields 117 BHB gravitational wave (GW) events, with 97 binaries merging within their host cluster and 20 merging after having been ejected. Only 8% of all ejected BHBs merge within the age of the Universe. Systems in this merging subset tend to have smaller separations and larger eccentricities, as this combination of parameters results in greater emission of gravitational radiation. We confirm known trends from Monte Carlo simulations, such as the anti-correlation between the mass of the binary and age of the cluster. In addition, we highlight for the first time a difference at low values of the mass ratio distribution between in-cluster and ejected mergers. However, the results depend on assumptions on the strength of GW recoils, thus in-cluster mergers cannot be ruled out at a significant level of confidence. A more substantial catalogue of BHB mergers and a more extensive library of N-body simulations are needed to constrain the origin of the observed events.

Author(s):  
Jarrod R. Hurley ◽  
Anna C. Sippel ◽  
Christopher A. Tout ◽  
Sverre J. Aarseth

AbstractMaking use of a new N-body model to describe the evolution of a moderate-size globular cluster, we investigate the characteristics of the population of black holes within such a cluster. This model reaches core-collapse and achieves a peak central density typical of the dense globular clusters of the Milky Way. Within this high-density environment, we see direct confirmation of the merging of two stellar remnant black holes in a dynamically formed binary, a gravitational wave source. We describe how the formation, evolution, and ultimate ejection/destruction of binary systems containing black holes impacts the evolution of the cluster core. Also, through comparison with previous models of lower density, we show that the period distribution of black hole binaries formed through dynamical interactions in this high-density model favours the production of gravitational wave sources. We confirm that the number of black holes remaining in a star cluster at late times and the characteristics of the binary black hole population depend on the nature of the star cluster, critically on the number density of stars and by extension the relaxation timescale.


2016 ◽  
Vol 12 (S324) ◽  
pp. 273-278
Author(s):  
Robert Lasenby

AbstractBosonic fields around a spinning black hole can be amplified via ‘superradiance’, a wave analogue of the Penrose process, which extracts energy and momentum from the black hole. For hypothetical ultra-light bosons, with Compton wavelengths on ≳ km scales, such a process can lead to the exponential growth of gravitationally bound states around astrophysical Kerr black holes. If such particles exist, as predicted in many theories of beyond Standard Model physics, then these bosonic clouds give rise to a number of potentially-observable signals. Among the most promising are monochromatic gravitational radiation signals which could be detected at Advanced LIGO and future gravitational wave observatories.


Sign in / Sign up

Export Citation Format

Share Document