An Efficient Procedure for Computing Quasi-Stationary Distributions of Markov Chains by Sparse Transition Structure

1994 ◽  
Vol 26 (01) ◽  
pp. 68-79
Author(s):  
P. K. Pollett ◽  
D. E. Stewart

We describe a computational procedure for evaluating the quasi-stationary distributions of a continuous-time Markov chain. Our method, which is an ‘iterative version' of Arnoldi's algorithm, is appropriate for dealing with cases where the matrix of transition rates is large and sparse, but does not exhibit a banded structure which might otherwise be usefully exploited. We illustrate the method with reference to an epidemic model and we compare the computed quasi-stationary distribution with an appropriate diffusion approximation.

1994 ◽  
Vol 26 (1) ◽  
pp. 68-79 ◽  
Author(s):  
P. K. Pollett ◽  
D. E. Stewart

We describe a computational procedure for evaluating the quasi-stationary distributions of a continuous-time Markov chain. Our method, which is an ‘iterative version' of Arnoldi's algorithm, is appropriate for dealing with cases where the matrix of transition rates is large and sparse, but does not exhibit a banded structure which might otherwise be usefully exploited. We illustrate the method with reference to an epidemic model and we compare the computed quasi-stationary distribution with an appropriate diffusion approximation.


2021 ◽  
Vol 82 (7) ◽  
Author(s):  
Linard Hoessly

AbstractWe examine reaction networks (CRNs) through their associated continuous-time Markov processes. Studying the dynamics of such networks is in general hard, both analytically and by simulation. In particular, stationary distributions of stochastic reaction networks are only known in some cases. We analyze class properties of the underlying continuous-time Markov chain of CRNs under the operation of join and examine conditions such that the form of the stationary distributions of a CRN is derived from the parts of the decomposed CRNs. The conditions can be easily checked in examples and allow recursive application. The theory developed enables sequential decomposition of the Markov processes and calculations of stationary distributions. Since the class of processes expressible through such networks is big and only few assumptions are made, the principle also applies to other stochastic models. We give examples of interest from CRN theory to highlight the decomposition.


2002 ◽  
Vol 16 (3) ◽  
pp. 351-366 ◽  
Author(s):  
Pauline Coolen-Schrijner ◽  
Erik A. van Doorn

The deviation matrix of an ergodic, continuous-time Markov chain with transition probability matrix P(·) and ergodic matrix Π is the matrix D ≡ ∫0∞(P(t) − Π) dt. We give conditions for D to exist and discuss properties and a representation of D. The deviation matrix of a birth–death process is investigated in detail. We also describe a new application of deviation matrices by showing that a measure for the convergence to stationarity of a stochastically increasing Markov chain can be expressed in terms of the elements of the deviation matrix of the chain.


1993 ◽  
Vol 25 (01) ◽  
pp. 82-102
Author(s):  
M. G. Nair ◽  
P. K. Pollett

In a recent paper, van Doorn (1991) explained how quasi-stationary distributions for an absorbing birth-death process could be determined from the transition rates of the process, thus generalizing earlier work of Cavender (1978). In this paper we shall show that many of van Doorn's results can be extended to deal with an arbitrary continuous-time Markov chain over a countable state space, consisting of an irreducible class, C, and an absorbing state, 0, which is accessible from C. Some of our results are extensions of theorems proved for honest chains in Pollett and Vere-Jones (1992). In Section 3 we prove that a probability distribution on C is a quasi-stationary distribution if and only if it is a µ-invariant measure for the transition function, P. We shall also show that if m is a quasi-stationary distribution for P, then a necessary and sufficient condition for m to be µ-invariant for Q is that P satisfies the Kolmogorov forward equations over C. When the remaining forward equations hold, the quasi-stationary distribution must satisfy a set of ‘residual equations' involving the transition rates into the absorbing state. The residual equations allow us to determine the value of µ for which the quasi-stationary distribution is µ-invariant for P. We also prove some more general results giving bounds on the values of µ for which a convergent measure can be a µ-subinvariant and then µ-invariant measure for P. The remainder of the paper is devoted to the question of when a convergent µ-subinvariant measure, m, for Q is a quasi-stationary distribution. Section 4 establishes a necessary and sufficient condition for m to be a quasi-stationary distribution for the minimal chain. In Section 5 we consider ‘single-exit' chains. We derive a necessary and sufficient condition for there to exist a process for which m is a quasi-stationary distribution. Under this condition all such processes can be specified explicitly through their resolvents. The results proved here allow us to conclude that the bounds for µ obtained in Section 3 are, in fact, tight. Finally, in Section 6, we illustrate our results by way of two examples: regular birth-death processes and a pure-birth process with absorption.


Author(s):  
Michel Mandjes ◽  
Birgit Sollie

AbstractThis paper considers a continuous-time quasi birth-death (qbd) process, which informally can be seen as a birth-death process of which the parameters are modulated by an external continuous-time Markov chain. The aim is to numerically approximate the time-dependent distribution of the resulting bivariate Markov process in an accurate and efficient way. An approach based on the Erlangization principle is proposed and formally justified. Its performance is investigated and compared with two existing approaches: one based on numerical evaluation of the matrix exponential underlying the qbd process, and one based on the uniformization technique. It is shown that in many settings the approach based on Erlangization is faster than the other approaches, while still being highly accurate. In the last part of the paper, we demonstrate the use of the developed technique in the context of the evaluation of the likelihood pertaining to a time series, which can then be optimized over its parameters to obtain the maximum likelihood estimator. More specifically, through a series of examples with simulated and real-life data, we show how it can be deployed in model selection problems that involve the choice between a qbd and its non-modulated counterpart.


2015 ◽  
Vol 33 (12) ◽  
pp. 2687-2700 ◽  
Author(s):  
Wai Hong Ronald Chan ◽  
Pengfei Zhang ◽  
Ido Nevat ◽  
Sai Ganesh Nagarajan ◽  
Alvin C. Valera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document