stochastic reaction
Recently Published Documents


TOTAL DOCUMENTS

387
(FIVE YEARS 106)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Vol 19 (3) ◽  
pp. 2720-2749
Author(s):  
Linard Hoessly ◽  
◽  
Carsten Wiuf

<abstract><p>We consider stochastic reaction networks modeled by continuous-time Markov chains. Such reaction networks often contain many reactions, potentially occurring at different time scales, and have unknown parameters (kinetic rates, total amounts). This makes their analysis complex. We examine stochastic reaction networks with non-interacting species that often appear in examples of interest (e.g. in the two-substrate Michaelis Menten mechanism). Non-interacting species typically appear as intermediate (or transient) chemical complexes that are depleted at a fast rate. We embed the Markov process of the reaction network into a one-parameter family under a two time-scale approach, such that molecules of non-interacting species are degraded fast. We derive simplified reaction networks where the non-interacting species are eliminated and that approximate the scaled Markov process in the limit as the parameter becomes small. Then, we derive sufficient conditions for such reductions based on the reaction network structure for both homogeneous and time-varying stochastic settings, and study examples and properties of the reduction.</p></abstract>


2021 ◽  
pp. 2240001
Author(s):  
Anhui Gu

In this paper, we investigate the existence and uniqueness of weak pullback mean random attractors for abstract stochastic evolution equations with general diffusion terms in Bochner spaces. As applications, the existence and uniqueness of weak pullback mean random attractors for some stochastic models such as stochastic reaction–diffusion equations, the stochastic [Formula: see text]-Laplace equation and stochastic porous media equations are established.


2021 ◽  
pp. 2140012
Author(s):  
Zhang Chen ◽  
Bixiang Wang

This paper deals with invariant measures of fractional stochastic reaction–diffusion equations on unbounded domains with locally Lipschitz continuous drift and diffusion terms. We first prove the existence and regularity of invariant measures, and then show the tightness of the set of all invariant measures of the equation when the noise intensity varies in a bounded interval. We also prove that every limit of invariant measures of the perturbed systems is an invariant measure of the corresponding limiting system. Under further conditions, we establish the ergodicity and the exponentially mixing property of invariant measures.


Author(s):  
Tabea Waizmann ◽  
Luca Bortolussi ◽  
Andrea Vandin ◽  
Mirco Tribastone

Stochastic reaction networks are a fundamental model to describe interactions between species where random fluctuations are relevant. The master equation provides the evolution of the probability distribution across the discrete state space consisting of vectors of population counts for each species. However, since its exact solution is often elusive, several analytical approximations have been proposed. The deterministic rate equation (DRE) gives a macroscopic approximation as a compact system of differential equations that estimate the average populations for each species, but it may be inaccurate in the case of nonlinear interaction dynamics. Here we propose finite-state expansion (FSE), an analytical method mediating between the microscopic and the macroscopic interpretations of a stochastic reaction network by coupling the master equation dynamics of a chosen subset of the discrete state space with the mean population dynamics of the DRE. An algorithm translates a network into an expanded one where each discrete state is represented as a further distinct species. This translation exactly preserves the stochastic dynamics, but the DRE of the expanded network can be interpreted as a correction to the original one. The effectiveness of FSE is demonstrated in models that challenge state-of-the-art techniques due to intrinsic noise, multi-scale populations and multi-stability.


Sign in / Sign up

Export Citation Format

Share Document