absorption probabilities
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Koray Düztaş

AbstractIn the conventional approach, fermionic test fields lead to a generic overspinning of black holes resulting in the formation of naked singularities. The absorption of the fermionic test fields with arbitrarily low frequencies is allowed for which the contribution to the angular momentum parameter of the space-time diverges. Recently we have suggested a more subtle treatment of the problem considering the fact that only the fraction of the test fields that is absorbed by the black hole contributes to the space-time parameters. Here, we re-consider the interaction of massless spin (1/2) fields with Kerr and Kerr–Newman black holes, adapting this new approach. We show that the drastic divergence problem disappears when one incorporates the absorption probabilities. Still, there exists a range of parameters for the test fields that can lead to overspinning. We employ backreaction effects due to the self-energy of the test fields which fixes the overspinning problem for fields with relatively large amplitudes, and renders it non-generic for smaller amplitudes. This non-generic overspinning appears likely to be fixed by alternative semi-classical and quantum effects.


2021 ◽  
Vol 21 (5&6) ◽  
pp. 395-404
Author(s):  
Ji Guan ◽  
Qisheng Wang ◽  
Mingsheng Ying

We present a novel application of the HHL (Harrow-Hassidim-Lloyd) algorithm --- a quantum algorithm solving systems of linear equations --- in solving an open problem about quantum walks, namely computing hitting (or absorption) probabilities of a general (not only Hadamard) one-dimensional quantum walks with two absorbing boundaries. This is achieved by a simple observation that the problem of computing hitting probabilities of quantum walks can be reduced to inverting a matrix. Then a quantum algorithm with the HHL algorithm as a subroutine is developed for solving the problem, which is faster than the known classical algorithms by numerical experiments.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikolaos Halidias

Abstract In this note we study the probability and the mean time for absorption for discrete time Markov chains. In particular, we are interested in estimating the mean time for absorption when absorption is not certain and connect it with some other known results. Computing a suitable probability generating function, we are able to estimate the mean time for absorption when absorption is not certain giving some applications concerning the random walk. Furthermore, we investigate the probability for a Markov chain to reach a set A before reach B generalizing this result for a sequence of sets A 1 , A 2 , … , A k {A_{1},A_{2},\dots,A_{k}} .


Author(s):  
Raffaella Carbone ◽  
Federico Girotti

AbstractWe introduce a notion of absorption operators in the context of quantum Markov processes. The absorption problem in invariant domains (enclosures) is treated for a quantum Markov evolution on a separable Hilbert space, both in discrete and continuous times: We define a well-behaving set of positive operators which can correspond to classical absorption probabilities, and we study their basic properties, in general, and with respect to accessibility structure of channels, transience and recurrence. In particular, we can prove that no accessibility is allowed between the null and positive recurrent subspaces. In the case, when the positive recurrent subspace is attractive, ergodic theory will allow us to get additional results, in particular about the description of fixed points.


Author(s):  
Travis Monk ◽  
André van Schaik

Many models of evolution are stochastic processes, where some quantity of interest fluctuates randomly in time. One classic example is the Moranbirth–death process, where that quantity is the number of mutants in a population. In such processes, we are often interested in their absorption (i.e. fixation) probabilities and the conditional distributions of absorption time. Those conditional time distributions can be very difficult to calculate, even for relatively simple processes like the Moran birth–death model. Instead of considering the time to absorption, we consider a closely related quantity: the number of mutant population size changes before absorption. We use Wald’s martingale to obtain the conditional characteristic functions of that quantity in the Moran process. Our expressions are novel, analytical and exact, and their parameter dependence is explicit. We use our results to approximate the conditional characteristic functions of absorption time. We state the conditions under which that approximation is particularly accurate. Martingales are an elegant framework to solve principal problems of evolutionary stochastic processes. They do not require us to evaluate recursion relations, so when they are applicable, we can quickly and tractably obtain absorption probabilities and times of evolutionary models.


2020 ◽  
Vol 52 (2) ◽  
pp. 588-616
Author(s):  
Zakhar Kabluchko ◽  
Dmitry Zaporozhets

AbstractThe Gaussian polytope $\mathcal P_{n,d}$ is the convex hull of n independent standard normally distributed points in $\mathbb{R}^d$ . We derive explicit expressions for the probability that $\mathcal P_{n,d}$ contains a fixed point $x\in\mathbb{R}^d$ as a function of the Euclidean norm of x, and the probability that $\mathcal P_{n,d}$ contains the point $\sigma X$ , where $\sigma\geq 0$ is constant and X is a standard normal vector independent of $\mathcal P_{n,d}$ . As a by-product, we also compute the expected number of k-faces and the expected volume of $\mathcal P_{n,d}$ , thus recovering the results of Affentranger and Schneider (Discr. and Comput. Geometry, 1992) and Efron (Biometrika, 1965), respectively. All formulas are in terms of the volumes of regular spherical simplices, which, in turn, can be expressed through the standard normal distribution function $\Phi(z)$ and its complex version $\Phi(iz)$ . The main tool used in the proofs is the conic version of the Crofton formula.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 350
Author(s):  
Seong-Yeon Lee ◽  
Tae-Young Jeong ◽  
Seonghun Ahn ◽  
Suyong Jung ◽  
Yong-Hoon Cho ◽  
...  

Interfacial bubbles are unintentionally created during the transfer of atomically thin 2D layers, a required process in the fabrication of van der Waals heterostructures. By encapsulating a WSe2 monolayer in hBN, we study the differing photoluminescence (PL) properties of the structure resulting from bubble formation. Based on the differentiated absorption probabilities at the bubbles compared to the pristine areas, we demonstrate that the visibility of the bubbles in PL mapping is enhanced when the photoexcitation wavelength lies between the n = 1 and n = 2 resonances of the A-exciton. An appropriate choice of detection window, which includes localized exciton emission but excludes free exciton emission, further improves bubble imaging capability. The interfacial position dependence of the bubbles, whether they are located above or below the WSe2 monolayer, gives rise to measurable consequences in the PL shape.


Sign in / Sign up

Export Citation Format

Share Document