sensor networks
Recently Published Documents


TOTAL DOCUMENTS

61485
(FIVE YEARS 8492)

H-INDEX

248
(FIVE YEARS 30)

Author(s):  
Mohammed D. Aljubaily ◽  
Imad Alshawi

The existence of a mobile sink for gathering data significantly extends wireless sensor networks (WSNs) lifetime. In recent years, a variety of efficient rendezvous points-based sink mobility approaches has been proposed for avoiding the energy sink-holes problem nearby the sink, diminishing buffer overflow of sensors, and reducing the data latency. Nevertheless, lots of research has been carried out to sort out the energy holes problem using controllable-based sink mobility methods. However, further developments can be demonstrated and achieved on such type of mobility management system. In this paper, a well-rounded strategy involving an energy-efficient routing protocol along with a controllable-based sink mobility method is proposed to extirpate the energy sink-holes problem. This paper fused the fuzzy A-star as a routing protocol for mitigating the energy consumption during data forwarding along with a novel sink mobility method which adopted a grid partitioning system and fuzzy system that takes account of the average residual energy, sensors density, average traffic load, and sources angles to detect the optimal next location of the mobile sink. By utilizing diverse performance metrics, the empirical analysis of our proposed work showed an outstanding result as compared with fuzzy A-star protocol in the case of a static sink.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-41
Author(s):  
Pamela Bezerra ◽  
Po-Yu Chen ◽  
Julie A. McCann ◽  
Weiren Yu

As sensor-based networks become more prevalent, scaling to unmanageable numbers or deployed in difficult to reach areas, real-time failure localisation is becoming essential for continued operation. Network tomography, a system and application-independent approach, has been successful in localising complex failures (i.e., observable by end-to-end global analysis) in traditional networks. Applying network tomography to wireless sensor networks (WSNs), however, is challenging. First, WSN topology changes due to environmental interactions (e.g., interference). Additionally, the selection of devices for running network monitoring processes (monitors) is an NP-hard problem. Monitors observe end-to-end in-network properties to identify failures, with their placement impacting the number of identifiable failures. Since monitoring consumes more in-node resources, it is essential to minimise their number while maintaining network tomography’s effectiveness. Unfortunately, state-of-the-art solutions solve this optimisation problem using time-consuming greedy heuristics. In this article, we propose two solutions for efficiently applying Network Tomography in WSNs: a graph compression scheme, enabling faster monitor placement by reducing the number of edges in the network, and an adaptive monitor placement algorithm for recovering the monitor placement given topology changes. The experiments show that our solution is at least 1,000× faster than the state-of-the-art approaches and efficiently copes with topology variations in large-scale WSNs.


Sign in / Sign up

Export Citation Format

Share Document