Rates of convergence for queues in heavy traffic. II: Sequences of queueing systems

1972 ◽  
Vol 4 (02) ◽  
pp. 382-391 ◽  
Author(s):  
Douglas P. Kennedy

Estimates are given for the rates of convergence in functional central limit theorems for the queue length process in a sequence of general multiple channel queues. The situation is considered where the traffic intensity in thenth. queue, ρn, tends to ρ ≧ 1 asnapproaches infinity. This extends previous work by the author, [6], in which the traffic intensity was fixed ≧ 1.

1972 ◽  
Vol 4 (2) ◽  
pp. 382-391 ◽  
Author(s):  
Douglas P. Kennedy

Estimates are given for the rates of convergence in functional central limit theorems for the queue length process in a sequence of general multiple channel queues. The situation is considered where the traffic intensity in the nth. queue, ρn, tends to ρ ≧ 1 as n approaches infinity. This extends previous work by the author, [6], in which the traffic intensity was fixed ≧ 1.


1972 ◽  
Vol 4 (2) ◽  
pp. 357-381 ◽  
Author(s):  
Douglas P. Kennedy

Estimates are given for the rates of convergence in functional central limit theorems for quantities of interest in the GI/G/1 queue and a general multiple channel system. The traffic intensity is fixed ≧ 1. The method employed involves expressing the underlying stochastic processes in terms of Brownian motion using the Skorokhod representation theorem.


1972 ◽  
Vol 4 (02) ◽  
pp. 357-381 ◽  
Author(s):  
Douglas P. Kennedy

Estimates are given for the rates of convergence in functional central limit theorems for quantities of interest in theGI/G/1 queue and a general multiple channel system. The traffic intensity is fixed ≧ 1. The method employed involves expressing the underlying stochastic processes in terms of Brownian motion using the Skorokhod representation theorem.


1989 ◽  
Vol 21 (02) ◽  
pp. 451-469 ◽  
Author(s):  
Zhang Hanqin ◽  
Wang Rongxin

The queueing system considered in this paper consists of r independent arrival channels and s independent service channels, where, as usual, the arrival and service channels are independent. In the queueing system, each server of the system has his own queue and arriving customers join the shortest line in the system. We give functional central limit theorems for the stochastic processes characterizing this system after appropriately scaling and translating the processes in traffic intensity ρ > 1.


1989 ◽  
Vol 21 (2) ◽  
pp. 451-469 ◽  
Author(s):  
Zhang Hanqin ◽  
Wang Rongxin

The queueing system considered in this paper consists of r independent arrival channels and s independent service channels, where, as usual, the arrival and service channels are independent. In the queueing system, each server of the system has his own queue and arriving customers join the shortest line in the system. We give functional central limit theorems for the stochastic processes characterizing this system after appropriately scaling and translating the processes in traffic intensity ρ > 1.


1998 ◽  
Vol 14 (2) ◽  
pp. 260-284 ◽  
Author(s):  
Xiaohong Chen ◽  
Halbert White

We obtain new central limit theorems (CLT's) and functional central limit theorems (FCLT's) for Hilbert-valued arrays near epoch dependent on mixing processes, and also new FCLT's for general Hilbert-valued adapted dependent heterogeneous arrays. These theorems are useful in delivering asymptotic distributions for parametric and nonparametric estimators and their functionals in time series econometrics. We give three significant applications for near epoch dependent observations: (1) A new CLT for any plug-in estimator of a cumulative distribution function (c.d.f.) (e.g., an empirical c.d.f., or a c.d.f. estimator based on a kernel density estimator), which can in turn deliver distribution results for many Von Mises functionals; (2) a new limiting distribution result for degenerate U-statistics, which delivers distribution results for Bierens's integrated conditional moment tests; (3) a new functional central limit result for Hilbert-valued stochastic approximation procedures, which delivers distribution results for nonparametric recursive generalized method of moment estimators, including nonparametric adaptive learning models.


1973 ◽  
Vol 5 (01) ◽  
pp. 119-137 ◽  
Author(s):  
D. J. Scott

The Skorokhod representation for martingales is used to obtain a functional central limit theorem (or invariance principle) for martingales. It is clear from the method of proof that this result may in fact be extended to the case of triangular arrays in which each row is a martingale sequence and the second main result is a functional central limit theorem for such arrays. These results are then used to obtain two functional central limit theorems for processes with stationary ergodic increments following on from the work of Gordin. The first of these theorems extends a result of Billingsley for Φ-mixing sequences.


Sign in / Sign up

Export Citation Format

Share Document