Inequalities for the anisotropic Poisson polytope

1995 ◽  
Vol 27 (01) ◽  
pp. 56-62 ◽  
Author(s):  
J. Mecke

The typical cell of a stationary Poisson hyperplane tessellation in the d-dimensional Euclidean space is called the Poisson polytope, and the cell containing the origin is called the Poisson 0-polytope. The intention of the paper is to show that the cells of the anisotropic tessellations are in some sense larger than those of the isotropic tessellations. Under the condition of equal intensities, it is proved that the moments of order n = 1, 2, … for the volume of the Poisson 0-polytope in the anisotropic case are not smaller than the corresponding moments in the isotropic case. Similar results are derived for the Poisson polytope. Finally, generalizations are mentioned.

1995 ◽  
Vol 27 (1) ◽  
pp. 56-62 ◽  
Author(s):  
J. Mecke

The typical cell of a stationary Poisson hyperplane tessellation in the d-dimensional Euclidean space is called the Poisson polytope, and the cell containing the origin is called the Poisson 0-polytope. The intention of the paper is to show that the cells of the anisotropic tessellations are in some sense larger than those of the isotropic tessellations. Under the condition of equal intensities, it is proved that the moments of order n = 1, 2, … for the volume of the Poisson 0-polytope in the anisotropic case are not smaller than the corresponding moments in the isotropic case. Similar results are derived for the Poisson polytope. Finally, generalizations are mentioned.


2011 ◽  
Vol 43 (2) ◽  
pp. 308-321 ◽  
Author(s):  
Daniel Hug ◽  
Rolf Schneider

For stationary Poisson hyperplane tessellations in d-dimensional Euclidean space and a dimension k ∈ {1, …, d}, we investigate the typical k-face and the weighted typical k-face (weighted by k-dimensional volume), without isotropy assumptions on the tessellation. The case k = d concerns the previously studied typical cell and zero cell, respectively. For k < d, we first find the conditional distribution of the typical k-face or weighted typical k-face, given its direction. Then we investigate how the shapes of the faces are influenced by assumptions of different types: either via containment of convex bodies of given volume (including a new result for k = d), or, for weighted typical k-faces, in the spirit of D. G. Kendall's asymptotic problem, suitably generalized. In all these results on typical or weighted typical k-faces with given direction space L, the Blaschke body of the section process of the underlying hyperplane process with L plays a crucial role.


2010 ◽  
Vol 29 (3) ◽  
pp. 143 ◽  
Author(s):  
Christoph Thäle ◽  
Viola Weiss

Homogeneous random tessellations in the 3-dimensional Euclidean space are considered that are stable under iteration – STIT tessellations. A classification of vertices, segments and flats is introduced and a couple of new metric and topological mean values for them and for the typical cell are calculated. They are illustrated by two examples, the isotropic and the cuboid case. Several extremum problems for these mean values are solved with the help of techniques from convex geometry by introducing an associated zonoid for STIT tessellations.


1998 ◽  
Vol 30 (4) ◽  
pp. 921-928 ◽  
Author(s):  
J. Mecke

Mixings of stationary Poisson hyperplane tessellations in d-dimensional Euclidean space are considered. The intention of the paper is to show that the 0-cell of a mixed stationary Poisson hyperplane tessellation Y is in some sense larger than that of stationary Poisson hyperplane tessellations Y' with the same intensity and directional distribution as Y. Related results concerning the moments for the volume of the 0-cell are derived. In special cases, similar statements with respect to the typical cell are proved.


1998 ◽  
Vol 30 (04) ◽  
pp. 921-928 ◽  
Author(s):  
J. Mecke

Mixings of stationary Poisson hyperplane tessellations in d-dimensional Euclidean space are considered. The intention of the paper is to show that the 0-cell of a mixed stationary Poisson hyperplane tessellation Y is in some sense larger than that of stationary Poisson hyperplane tessellations Y' with the same intensity and directional distribution as Y. Related results concerning the moments for the volume of the 0-cell are derived. In special cases, similar statements with respect to the typical cell are proved.


2011 ◽  
Vol 43 (02) ◽  
pp. 308-321 ◽  
Author(s):  
Daniel Hug ◽  
Rolf Schneider

For stationary Poisson hyperplane tessellations in d-dimensional Euclidean space and a dimension k ∈ {1, …, d}, we investigate the typical k-face and the weighted typical k-face (weighted by k-dimensional volume), without isotropy assumptions on the tessellation. The case k = d concerns the previously studied typical cell and zero cell, respectively. For k &lt; d, we first find the conditional distribution of the typical k-face or weighted typical k-face, given its direction. Then we investigate how the shapes of the faces are influenced by assumptions of different types: either via containment of convex bodies of given volume (including a new result for k = d), or, for weighted typical k-faces, in the spirit of D. G. Kendall's asymptotic problem, suitably generalized. In all these results on typical or weighted typical k-faces with given direction space L, the Blaschke body of the section process of the underlying hyperplane process with L plays a crucial role.


1999 ◽  
Vol 6 (4) ◽  
pp. 323-334
Author(s):  
A. Kharazishvili

Abstract We give a characterization of all those groups of isometric transformations of a finite-dimensional Euclidean space, for which an analogue of the classical Vitali theorem [Sul problema della misura dei gruppi di punti di una retta, 1905] holds true. This characterization is formulated in purely geometrical terms.


Author(s):  
A. P. Stone

ABSTRACTGeneral shift operators for angular momentum are obtained and applied to find closed expressions for some Wigner coefficients occurring in a transformation between two equivalent representations of the four-dimensional rotation group. The transformation gives rise to analytical relations between hyperspherical harmonics in a four-dimensional Euclidean space.


Author(s):  
J. F. C. Kingman

1. A type of problem which frequently occurs in probability theory and statistics can be formulated in the following way. We are given real-valued functions f(x), gi(x) (i = 1, 2, …, k) on a space (typically finite-dimensional Euclidean space). Then the problem is to set bounds for Ef(X), where X is a random variable taking values in , about which all we know is the values of Egi(X). For example, we might wish to set bounds for P(X > a), where X is a real random variable with some of its moments given.


Sign in / Sign up

Export Citation Format

Share Document