set partitioning
Recently Published Documents


TOTAL DOCUMENTS

506
(FIVE YEARS 78)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
Vol 24 (2) ◽  
pp. 0-0

Over recent times, medical imaging plays a significant role in clinical practices. Storing and transferring the huge volume of images becomes complicated without an efficient image compression technique. This paper proposes a compression algorithm that uses a Haar based wavelet transform called Tetrolet transform, which reduces the noise on the input images and decomposes with a 4 x 4 blocks of equal squares called tetrominoes. It opts for a decomposing using optimal scheme for achieving the input image into a sparse representation which gives a much-detailed performance for texture and edge information better than wavelet transform. Set Partitioning in Hierarchical Trees (SPIHT) is used for encoding the significant coefficients to achieve efficient image compression. It has been investigated with various metaheuristic algorithms. Experimental results prove that the proposed method outperforms the other transform-based compression in terms of PSNR, CR, and Complexity. Also, the proposed method shows an improved result with another state of work.


2022 ◽  
Vol 24 (2) ◽  
pp. 1-14
Author(s):  
Saravanan S. ◽  
Sujitha Juliet

Over recent times, medical imaging plays a significant role in clinical practices. Storing and transferring the huge volume of images becomes complicated without an efficient image compression technique. This paper proposes a compression algorithm that uses a Haar based wavelet transform called Tetrolet transform, which reduces the noise on the input images and decomposes with a 4 x 4 blocks of equal squares called tetrominoes. It opts for a decomposing using optimal scheme for achieving the input image into a sparse representation which gives a much-detailed performance for texture and edge information better than wavelet transform. Set Partitioning in Hierarchical Trees (SPIHT) is used for encoding the significant coefficients to achieve efficient image compression. It has been investigated with various metaheuristic algorithms. Experimental results prove that the proposed method outperforms the other transform-based compression in terms of PSNR, CR, and Complexity. Also, the proposed method shows an improved result with another state of work.


2022 ◽  
Vol 52 (6) ◽  
Author(s):  
Xiaodong Zhang ◽  
Zhaohui Duan ◽  
Hanping Mao ◽  
Hongyan Gao ◽  
Zhiyu Zuo

ABSTRACT: For non-destructive detection of water stress in lettuce, terahertz time-domain spectroscopy (THz-TDS) was used to quantitatively analyze water content in lettuce. Four gradient lettuce water contents were used . Spectral data of lettuce were collected by a THz-TDS system, and denoised using the S-G derivative, Savitzky-Golay (S-G) smoothing and normalization filtering. The fitting effect of the pretreatment method was better than that of regression fitting, and the S-G derivative fitting effect was obtained. Then a calibration set and a verification set were divided by the Kennan-Stone algorithm, sample set partitioning based on joint X-Y distance (SPXY) algorithm, and the random sampling (RS) algorithm, and the parameters of RS were optimized by regression fitting. The stability competitive adaptive reweighted sampling, iteratively retained information variables and interval combination optimization were used to select characteristic wavelengths, and then continuous projection was used on basis of the three algorithms above. After the successive projection algorithm was re-screened, partial least squares regression was used into modeling. The regression coefficients Rc 2 and RMSEC reach 0.8962 and 412.5% respectively, and Rp 2 and RMSEP of the verification set are 0.8757 and 528.9% respectively.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 65
Author(s):  
Wenliang Lin ◽  
Yaohua Deng ◽  
Ke Wang ◽  
Zhongliang Deng ◽  
Hao Liu ◽  
...  

Low Earth Orbit (LEO) Satellite Internet Network (LEO-SIN) is a promising approach to global Gigabit per second (Gbps) broadband communications in the coming sixth-generation (6G) era. This paper mainly focuses on the innovation of accuracy improvement of simulation modeling of the Doppler Power Spectrum (DPS) of satellite channels in LEO-SIN. Existing DPS modeling methods are based on Rice’s Sum-of-Sinusoids (SOS) which have obvious modeling errors in scenarios with main signal propagation paths, asymmetrical power spectrum, and random multi-path signals with a random Angle of Arrival (AOA) in LEO-SIN. There are few state-of-art researches devoted to higher accuracy of DPS modeling for simulation. Therefore, this paper proposes a novel Random Method of Exact Doppler Spread method Set Partitioning (RMEDS-SP). Distinct from existed researches, we firstly model the DPS of LEO-SIN, which more accurately describes the characteristics of frequency dispersion with the main path and multi-path signals with random AOA. Furthermore, piecewise functions to the Autocorrelation Function (ACF) of RMEDS-SP is first exploited to converge the modeling error supposition with time by periodic changes, which further improve the accuracy of the DPS model. Experimental results show that the accuracy of DPS in our proposed model is improved by 32.19% and 18.52%, respectively when compared with existing models.


Author(s):  
Kai Wang ◽  
Lu Zhen ◽  
Jun Xia ◽  
Roberto Baldacci ◽  
Shuaian Wang

The consistent vehicle routing problem (ConVRP) aims to design synchronized routes on multiple days to serve a group of customers while minimizing the total travel cost. It stipulates that customers should be visited at roughly the same time (time consistency) by several familiar drivers (driver consistency). This paper generalizes the ConVRP for any level of driver consistency and additionally addresses route consistency, which means that each driver can traverse at most a certain proportion of different arcs of routes on planning days, which guarantees route familiarity. To solve this problem, we develop two set partitioning-based formulations, one based on routes and the other based on schedules. We investigate valid lower bounds on the linear relaxations of both of the formulations that are used to derive a subset of columns (routes and schedules); within the subset are columns of an optimal solution for each formulation. We then solve the reduced problem of either one of the formulations to achieve an optimal solution. Numerical results show that our exact method can effectively solve most of the medium-sized ConVRP instances in the literature and can also solve some newly generated instances involving up to 50 customers. Our exact solutions explore some managerial findings with respect to the adoption of consistency measures in practice. First, maintaining reasonably high levels of consistency requirements does not necessarily always lead to a substantial increase in cost. Second, a high level of time consistency can potentially be guaranteed by adopting a high level of driver consistency. Third, maintaining high levels of time consistency and driver consistency may lead to lower levels of route consistency.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yujian Song ◽  
Ming Xue ◽  
Changhua Hua ◽  
Wanli Wang

In this paper, we investigate the resource-constrained order acceptance and scheduling on unrelated parallel machines that arise in make-to-order systems. The objective of this problem is to simultaneously select a subset of orders to be processed and schedule the accepted orders on unrelated machines in such a way that the resources are not overutilized at any time. We first propose two formulations for the problem: mixed integer linear programming formulation and set partitioning. In view of the complexity of the problem, we then develop a column generation approach based on the set partitioning formulation. In the proposed column generation approach, a differential evolution algorithm is designed to solve subproblems efficiently. Extensive numerical experiments on different-sized instances are conducted, and the results demonstrate that the proposed column generation algorithm reports optimal or near-optimal solutions that are evidently better than the solutions obtained by solving the mixed integer linear programming formulation.


Author(s):  
Prakash Tunga P. ◽  
Vipula Singh

In the compression of medical images, region of interest (ROI) based techniques seem to be promising, as they can result in high compression ratios while maintaining the quality of region of diagnostic importance, the ROI, when image is reconstructed. In this article, we propose a set-up for compression of brain magnetic resonance imaging (MRI) images based on automatic extraction of tumor. Our approach is to first separate the tumor, the ROI in our case, from brain image, using support vector machine (SVM) classification and region extraction step. Then, tumor region (ROI) is compressed using Arithmetic coding, a lossless compression technique. The non-tumorous region, non-region of interest (NROI), is compressed using a lossy compression technique formed by a combination of discrete wavelet transform (DWT), set partitioning in hierarchical trees (SPIHT) and arithmetic coding (AC). The classification performance parameters, like, dice coefficient, sensitivity, positive predictive value and accuracy are tabulated. In the case of compression, we report, performance parameters like mean square error and peak signal to noise ratio for a given set of bits per pixel (bpp) values. We found that the compression scheme considered in our setup gives promising results as compared to other schemes.


Author(s):  
Yassine Habchi ◽  
Ameur Fethi Aimer ◽  
Mohammed Beladgham ◽  
Riyadh Bouddou

Recently, ophthalmic clinics have seen many complaints related to retinal diseases. The degree of clarity of the blood vessels (BV) in the eye can be an important indicator of some diseases affecting the retina such as diabetic retinopathy. To diagnose it, we need to intervene more than a medical team, especially in some difficult cases, through the exchange of medical images obtained by photography. This method has contributed significantly to the production of large data that can quickly saturate transmission, storage systems and increase processing time, so the need to compress images efficiently without modifying the content before transmission represents a major challenge. This paper provides an effective method for compressing color retinal images (CRI), which relies on the use of an integer lifting scheme (ILS) based on cohen daubechies-feaveau wavelet (CDFW9/7) and the set partitioning in hierarchical trees (SPIHT) to encode large coefficients. The obtained results demonstrate that the suggested method reduce algorithmic complexity, improve the retinal image quality and achieves high objective parameters values for ultra-low bitrate compared to the conventional methods.


Sign in / Sign up

Export Citation Format

Share Document